Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.

additive identitythe number zero (0); when zero (0) is added to

another number the sum is the number itself *Example*: 5 + 0 = 5

additive inverses a number and its opposite whose sum is zero

(0); also called *opposites*

Example: In the equation 3 + (-3) = 0, the

additive inverses are 3 and -3.

angle (∠)two rays extending from a common

endpoint called the vertex; measures of angles are described in degrees (°)

vertex ray

area (*A*)the measure, in square units, of the inside

region of a closed two-dimensional figure; the number of square units needed to cover a

surface

Example: A rectangle with sides of 4 units by 6

units has an area of 24 square units.

associative propertythe way in which three or more numbers are

grouped for addition or multiplication does *not* change their sum or product, respectively

Examples: (5+6)+9=5+(6+9) or

 $(2 \times 3) \times 8 = 2 \times (3 \times 8)$

commutative property the order in which any two numbers are added or multiplied does *not* change their sum or

product, respectively

Examples: 2 + 3 = 3 + 2 or

 $4 \times 7 = 7 \times 4$

consecutivein order

Example: 6, 7, 8 are consecutive whole numbers and 4, 6, 8 are consecutive even numbers.

cube (power)the third power of a number

Example: $4^3 = 4 \times 4 \times 4 = 64$; 64 is the cube of 4

cubic unitsunits for measuring volume

decrease to make less

degree (°)common unit used in measuring angles

differencea number that is the result of subtraction

Example: In 16 - 9 = 7, the difference is 7.

distributive propertythe product of a number and the sum or

difference of two numbers is equal to the sum

or difference of the two products

Examples: x(a + b) = ax + bx

 $5(10 + 8) = 5 \bullet 10 + 5 \bullet 8$

equationa mathematical sentence stating that the two

expressions have the same value

Example: 2x = 10

equivalent

(forms of a number) the same number expressed in different forms

Example: $\frac{3}{4}$, 0.75, and 75%

even integerany integer divisible by 2; any integer with

the digit 0, 2, 4, 6, or 8 in the units place; any

integer in the set $\{\dots$, -4, -2, 0, 2, 4, ... $\}$

expression a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables $Examples: 4r^2; 3x + 2y;$ An expression does not contain equal (=) or inequality $(<, >, \le, \ge, \text{ or } \ne)$ signs.

formulaa way of expressing a relationship using variables or symbols that represent numbers

graph of a numberthe point on a number line paired with the number

increaseto make greater

inequality a sentence that states one expression is greater than (>), greater than or equal to (\geq), less than (<), less than or equal to (\leq), or not equal to (\neq) another expression $Examples: a \neq 5 \text{ or } x < 7 \text{ or } 2y + 3 \geq 11$

integers the numbers in the set $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$

irrational number a real number that cannot be expressed as a ratio of two integers $Example: \sqrt{2}$

length (*l*)a one-dimensional measure that is the measurable property of line segments

like termsterms that have the same variables and the same corresponding exponents Example: In $5x^2 + 3x^2 + 6$, the like terms are $5x^2$ and $3x^2$.

measure (m)

of an angle (∠)the number of degrees (°) of an angle

multiplicative identitythe number one (1); the product of a number and the multiplicative identity is the number itself

Example: $5 \times 1 = 5$

multiplicative inverse any two numbers with a product of 1; also

called reciprocals

Example: 4 and $\frac{1}{4}$; zero (0) has no multiplicative inverse

multiplicative

property of -1the product of any number and -1 is the

opposite or additive inverse of the number

Example: -1(a) = -a and a(-1) = -a

multiplicative

property of zerofor any number a, $a \bullet 0 = 0$ and $0 \bullet a = 0$

negative numbersnumbers less than zero

number linea line on which numbers can be written or visualized

odd integerany integer not divisible by 2; any integer with the digit 1, 3, 5, 7, or 9 in the units place; any integer in the set {..., -5, -3, -1, 1, 3, 5, ...}

order of operationsthe order of performing computations in parentheses first, then exponents or powers, followed by multiplication and/or division (as read from left to right), then addition and/or subtraction (as read from left to right); also called *algebraic order of operations*

Example:
$$5 + (12 - 2) \div 2 - 3 \times 2 =$$

 $5 + 10 \div 2 - 3 \times 2 =$
 $5 + 5 - 6 =$
 $10 - 6 =$
 4

perimeter (*P*)the distance around a figure

positive numbersnumbers greater than zero

product the result of multiplying numbers together Example: In 6 x 8 = 48, the product is 48.

quotientthe result of dividing two numbers Example: In $42 \div 7 = 6$, the quotient is 6.

ratiothe comparison of two quantities Example: The ratio of a and b is a:b or $\frac{a}{b}$, where $b \neq 0$.

rational number a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$

real numbersthe set of all rational and irrational numbers

- rectanglea parallelogram with four right angles
- sidethe edge of a polygon, the face of a polyhedron, or one of the rays that make up an angle *Example*: A triangle has three sides.

- **simplify an expression**to perform as many of the indicated operations as possible
- **solve** to find all numbers that make an equation or inequality true
- squarea rectangle with four sides the same length
- square (of a number) the result when a number is multiplied by itself or used as a factor twice *Example*: 25 is the square of 5.

square units	units for measuring area; the measure of the amount of an area that covers a surface
substitute	to replace a variable with a numeral $Example: 8(a) + 3$ $8(5) + 3$
substitution property	
of equality	for any numbers a and b , if $a = b$, then a may be replaced by b
sum	the result of adding numbers together <i>Example</i> : In $6 + 8 = 14$, the sum is 14.
symmetric property	
of equality	for any numbers a and b , if $a = b$, then $b = a$
table (or chart)	a data display that organizes information about a topic into categories
triangle	.a polygon with three sides
variable	any symbol, usually a letter, which could represent a number
width (w)	a one-dimensional measure of something side to side