#### Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.

**coefficient** .....the number that multiplies the variable(s) in an

algebraic expression

*Example*: In 4xy, the coefficient of xy is 4. If no number is specified, the coefficient is 1.

**conjugate** .....if x = a + b, then a - b is the conjugate of x

*Example*: The expressions  $(a + \sqrt{b})$  and  $(a - \sqrt{b})$  are conjugates of each other.

decimal number .....any number written with a decimal point in

the number

Examples: A decimal number falls between two whole numbers, such as 1.5, which falls between 1 and 2. Decimal numbers smaller than 1 are sometimes called *decimal fractions*,

such as five-tenths, or  $\frac{5}{10}$ , which is written 0.5.

**denominator** ......the bottom number of a fraction, indicating the

number of equal parts a whole was divided

into

*Example*: In the fraction  $\frac{2}{3}$  the denominator is 3, meaning the whole was divided into 3 equal

parts.

**digit** ......any one of the 10 symbols 0, 1, 2, 3, 4, 5, 6, 7, 8,

or 9

**distributive property** ...... the product of a number and the sum or

difference of two numbers is equal to the sum or difference of the two products

Examples: x(a + b) = ax + bx

 $5(10+8) = 5 \cdot 10 + 5 \cdot 8$ 

**expression** ...... a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables  $Examples: 4r^2; 3x + 2y; \sqrt{25}$  An expression does *not* contain equal (=) or inequality (<, >,  $\leq$ ,  $\geq$ , or  $\neq$ ) signs.

**FOIL method** ......a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:

F First terms

O Outside terms

I Inside terms

L Last terms.

Example:



**irrational number** ......a real number that cannot be expressed as a ratio of two integers  $Example: \sqrt{2}$ 

like terms ......terms that have the same variables and the same corresponding exponents Example: In  $5x^2 + 3x^2 + 6$ , the like terms are  $5x^2$  and  $3x^2$ .

**numerator** ..... the top number of a fraction, indicating the number of equal parts being considered *Example*: In the fraction  $\frac{2}{3}$ , the numerator is 2.

perfect square ...... a number whose square root is a whole number Example: 25 is a perfect square because  $5 \times 5 = 25$ .

**product** ..... the result of multiplying numbers together Example: In 6 x 8 = 48, the product is 48.

radical ......an expression that has a root (square root, cube root, etc.)

*Example*:  $\sqrt{25}$  is a radical

Any root can be specified by an index number,

*b*, in the form  $\sqrt[b]{a}$  (e.g.,  $\sqrt[3]{8}$ ).

A radical without an index number is understood to be a square root.

root to be taken (index)

radical 
$$\rightarrow \sqrt[3]{8} = 2 \leftarrow \text{root}$$
 sign radicand

radical

radical expression ......a numerical expression containing a radical sign

Examples:  $\sqrt{25}$   $2\sqrt{25}$ 

**radical sign (** $\sqrt{\ }$ **)** ......the symbol ( $\sqrt{\ }$ ) used before a number to show that the number is a *radicand* 

rationalizing

the denominator ......a method used to remove or eliminate radicals from the denominator of a fraction

**rational number** ...... a number that can be expressed as a ratio  $\frac{a}{b}$ , where a and b are integers and  $b \neq 0$ 

**simplest radical form** ....... an expression under the radical sign that contains no perfect squares greater than 1, contains no fractions, and is not in the denominator of a fraction  $Example: \sqrt{27} = \sqrt{9} \bullet \sqrt{3} = \sqrt{9} \bullet \sqrt{3} = 3\sqrt{3}$ 

**simplify an expression** ..... to perform as many of the indicated operations as possible

square root ......a positive real number that can be multiplied by itself to produce a given number *Example*: The square root of 144 is 12 or  $\sqrt{144} = 12$ .

term .......a number, variable, product, or quotient in an expression Example: In the expression  $4x^2 + 3x + x$ , the terms are  $4x^2$ , 3x, and x.

**variable** ......any symbol, usually a letter, which could represent a number

whole numbers .....the numbers in the set  $\{0, 1, 2, 3, 4, ...\}$