
L E A R N T O
P R O G R A M W I T H

S C R A T C H

L E A R N T O
P R O G R A M W I T H

S C R A T C H
A V I S U A L I N T R O D U C T I O N T O P R O G R A M M I N G

W I T H G A M E S , A R T , S C I E N C E , A N D M A T H

M A J E D M A R J I

C O
V E R S

S C
R

A T C
H

 2

SHELVE IN:
COM

PUTERS/PROGRAM
M

ING
LANGUAGES

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Scratch is a fun, free, beginner-friendly programming
environment where you connect blocks of code to build
programs. While most famously used to introduce kids
to programming, Scratch can make computer science

countless lines of code in a cryptic programming lan-

script, and with a single click, you can even test any
coded blocks plainly show each logical step in a given

part of your script to check your logic. You’ll learn
how to:

approachable for people of any age. Rather than type

M
A

R
JI

L
E

A
R

N
 T

O
 P

R
O

G
R

A
M

 W
IT

H
 S

C
R

A
T

C
H

L
E

A
R

N
 T

O
 P

R
O

G
R

A
M

 W
IT

H
 S

C
R

A
T

C
H

guage, why not use colorful command blocks and
cartoon sprites to create powerful scripts?

• Harness the power of repeat loops and recursion

• Use if/else statements and logical operators to make
decisions

program
• Store data in variables and lists to use later in your

• Read, store, and manipulate user input

Hands-on projects will challenge you to create an

• Implement key computer science algorithms like linear
searches and bubble sorts

Ohm’s law simulator, draw intricate patterns, program
sprites to mimic line-following robots, create arcade-style
games, and more! Each chapter is packed with detailed
explanations, annotated illustrations, guided examples,
lots of color, and plenty of exercises to help the lessons

Wayne State University in Michigan. He holds a PhD

A B O U T T H E A U T H O R

Majed Marji is a senior development engineer at
General Motors and an adjunct faculty member at

in electrical engineering from Wayne State University
and an MBA in strategic management from Davenport
University.

stick. Learn to Program with Scratch is the perfect place
to start your computer science journey.

G U I D E T O
(A N D P A I N L E S S)
A N I L L U S T R A T E D

C O M P U T E R
S C I E N C E

G U I D E T O
(A N D P A I N L E S S)
A N I L L U S T R A T E D

C O M P U T E R
S C I E N C E

In Learn to Program with Scratch, author Majed Marji
uses Scratch to explain the concepts essential to solving
real-world programming problems. The labeled, color-

Learn to Program with Scratch

L e a r n t o
P r o g r a m w i t h

S c r a t c h
 a V i s u a l i n t r o d u c t i o n

t o P r o g r a m m i n g w i t h g a m e s ,
a r t , S c i e n c e , a n d m a t h

by Majed Marj i

San Francisco

Learn to Program with Scratch. Copyright © 2014 by Majed Marji.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA
First printing

18 17 16 15 14 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-543-9
ISBN-13: 978-1-59327-543-3

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Tina Salameh
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Tyler Watts
Copyeditor: Paula L. Fleming
Compositor: Lynn L’Heureux
Proofreader: Kate Blackham

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Marji, Majed, author.
 Learn to program with Scratch : a visual introduction to programming with games, art, science, and
math / by Majed Marji.

pages cm
 Audience: 11+
 ISBN-13: 978-1-59327-543-3 (paperback)
 ISBN-10: 1-59327-543-9 (paperback)
1. Scratch (Computer program language) 2. Computer programming. 3. Computer games--Programming.
I. Title.
 QA76.73.S345M38 2014
 794.8'1526--dc23

2013043492

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

about the author
Majed Marji holds a PhD in electrical engineering from Wayne State Uni-
versity and an MBA in strategic management from Davenport University.
He has over 15 years of experience in the automotive industry, where he
developed many software applications for real-time data acquisition, device
control, test-cell management, engineering data analysis, embedded con-
trollers, telematics, hybrid vehicles, and safety-critical powertrain systems.
Dr. Marji is also an adjunct faculty member with the Electrical Engineering
Department at Wayne State University. He has taught courses on communi-
cation engineering, machine vision, microprocessors, control systems, and
algorithms and data structures, among other topics.

about the technical reviewer
Tyler Watts, EdS, is a creative-computing educator who teaches sixth
through eighth graders in Kansas City (Kansas) Unified School District 500
and adult students at the University of Missouri–Kansas City. He has been
using Scratch since 2009 as a tool to combat the digital divide and teach
students how to think like computer scientists. Since Tyler’s first year of teach-
ing Scratch, he has learned the importance of weaning learners off of the
“Scratch training wheels” and challenging them and molding them into
digital creators. He feels that programming is a form of personal expres-
sion and teaches his students to approach it as they would any other art
form and have fun.

B r i e f c o n t e n t S

Acknowledgments . xv

Introduction .xvii

Chapter 1: Getting Started . 1

Chapter 2: Motion and Drawing . 25

Chapter 3: Looks and Sound . 47

Chapter 4: Procedures . 67

Chapter 5: Variables . 91

Chapter 6: Making Decisions . 123

Chapter 7: Repetition: A Deeper Exploration of Loops . 155

Chapter 8: String Processing . 185

Chapter 9: Lists . 213

Appendix: Sharing and Collaboration . 243

Index . 251

c o n t e n t S i n D e t a i L

acknowLedgmentS xv

introduction xvii
Whom This Book Is For .xviii
A Note to the Reader .xviii
Features .xviii
Organization of This Text . xix
Conventions Used . xx
Online Resources . xx
Errata and Updates . xx

1
getting Started 1
What Is Scratch? . 2

Try It Out 1-1 . 3
Scratch Programming Environment . 3

The Stage . 4
Try It Out 1-2 . 4

Sprite List . 5
Try It Out 1-3 . 5

Blocks Tab . 6
Try It Out 1-4 . 7

Scripts Area . 7
Try It Out 1-5 . 8
Try It Out 1-6 . 9

Costumes Tab . 9
Try It Out 1-7 . 10

Sounds Tab . 10
Try It Out 1-8 . 10

Backdrops Tab . 11
Try It Out 1-9 .11

Sprite Info . 11
Toolbar . 12

Paint Editor . 13
Setting the Center of an Image . 13

Try It Out 1-10 . 14
Setting Transparent Color . 14

Your First Scratch Game . 15
Step 1: Prepare the Backdrop . 16
Step 2: Add the Paddle and Ball . 16
Step 3: Start the Game and Get Your Sprites Moving 17

Try It Out 1-11 . 18
Step 4: Spice It Up with Sound . 19

Scratch Blocks: An Overview . 20

x Contents in Detail

Arithmetic Operators and Functions . 21
Arithmetic Operators . 21
Random Numbers . 21
Mathematical Functions . 22

Summary . 22
Problems . 23

2
motion and drawing 25
Using Motion Commands . 25

Absolute Motion . 26
Try It Out 2-1 . 27

Relative Motion . 27
Try It Out 2-2 . 30

Other Motion Commands . 30
Pen Commands and Easy Draw . 31

Try It Out 2-3 . 31
Try It Out 2-4 . 32

The Power of Repeat . 33
Try It Out 2-5 . 34

Rotated Squares . 34
Try It Out 2-6 . 35

Exploring with Stamp . 35
Try It Out 2-7 . 35

Scratch Projects . 36
Get the Money . 36
Catching Apples . 39

More on Cloned Sprites . 42
Summary . 43
Problems . 44

3
LookS and Sound 47
The Looks Palette . 48

Changing Costumes to Animate . 48
Try It Out 3-1 . 49

Sprites That Speak and Think . 50
Try It Out 3-2 . 50

Image Effects . 50
Size and Visibility . 51

Try It Out 3-3 . 52
Layers . 52

Try It Out 3-4 . 53
The Sound Palette . 53

Playing Audio Files . 53
Playing Drums and Other Sounds . 54
Composing Music . 55

Contents in Detail xi

Controlling Sound Volume . 55
Try It Out 3-5 . 56

Setting the Tempo . 56
Try It Out 3-6 . 56

Scratch Projects . 56
Dancing on Stage . 57
Fireworks . 60

Summary . 62
Problems . 63

4
ProcedureS 67
Message Broadcasting and Receiving . 68

Sending and Receiving Broadcasts . 69
Message Broadcasting to Coordinate Multiple Sprites 70

Creating Large Programs in Small Steps . 72
Creating Procedures with Message Broadcasting . 73
Building Your Own Block . 75
Passing Parameters to Custom Blocks . 77

Try It Out 4-1 . 81
Using Nested Procedures . 82

Try It Out 4-2 . 84
Working with Procedures . 84

Breaking Programs Down into Procedures . 84
Try It Out 4-3 . 86

Building Up with Procedures . 87
Summary . 89
Problems . 89

5
VariabLeS 91
Data Types in Scratch . 92

What’s in the Shape? . 92
Automatic Data Type Conversion . 93

Introduction to Variables . 94
What Is a Variable? . 94
Creating and Using Variables . 97

Try It Out 5-1 . 100
The Scope of Variables . 100
Changing Variables . 102

Try It Out 5-2 . 104
Variables in Clones . 104

Displaying Variable Monitors . 106
Using Variable Monitors in Applications . 108

Simulating Ohm’s Law . 108
Try It Out 5-3 .110

Demonstrating a Series Circuit . 110
Try It Out 5-4 .111

xii Contents in Detail

Visualizing a Sphere’s Volume and Surface Area . 111
Try It Out 5-5 .113

Drawing an n-Leaved Rose . 114
Try It Out 5-6 .115

Modeling Sunflower Seed Distribution . 116
Try It Out 5-7 .117

Getting Input from Users . 117
Reading a Number . 118
Reading Characters . 118
Performing Arithmetic Operations . 119

Summary . 120
Problems . 120

6
making deciSionS 123
Comparison Operators . 124

Evaluating Boolean Expressions . 125
Comparing Letters and Strings . 126

Decision Structures . 128
The if Block . 128
Using Variables as Flags . 129
The if/else Block . 130
Nested if and if/else Blocks . 132
Menu-Driven Programs . 132

Logical Operators . 134
The and Operator . 135
The or Operator . 135
The not Operator . 136
Using Logical Operators to Check Numeric Ranges 137

Scratch Projects . 140
Guess My Coordinates . 140

Try It Out 6-1 . 142
Triangle Classification Game . 142

Try It Out 6-2 . 145
Line Follower . 146

Try It Out 6-3 . 147
Equation of a Line . 147

Try It Out 6-4 . 151
Other Applications . 151

Summary . 151
Problems . 152

7
rePetition: a deePer exPLoration of LooPS 155
More Loop Blocks in Scratch . 156

The repeat until Block . 157
Try It Out 7-1 . 158

Building a forever if Block . 158
Try It Out 7-2 . 159

Contents in Detail xiii

Stop Commands . 160
Try It Out 7-3 . 161

Ending a Computational Loop . 162
Validating User Input . 162

Counters . 164
Check a Password . 164

Try It Out 7-4 . 165
Counting by a Constant Amount . 165

Revisiting Nested Loops . 167
Try It Out 7-5 . 169

Recursion: Procedures That Call Themselves . 169
Try It Out 7-6 . 171

Scratch Projects . 171
Analog Clock . 171

Try It Out 7-7 . 173
Bird Shooter Game . 173

Try It Out 7-8 . 176
Free-Fall Simulation . 177

Try It Out 7-9 . 178
Projectile Motion Simulator . 179

Try It Out 7-10 . 182
Other Applications . 182

Summary . 182
Problems . 183

8
String ProceSSing 185
Revisiting the String Data Type . 186

Counting Special Characters in a String . 186
Comparing String Characters . 187

Try It Out 8-1 . 188
String Manipulation Examples . 189

Igpay Atinlay . 189
Try It Out 8-2 . 190

Fix My Spelling . 190
Try It Out 8-3 . 192

Unscramble . 193
Scratch Projects . 195

Shoot . 195
Try It Out 8-4 . 197

Binary to Decimal Converter . 198
Try It Out 8-5 . 199
Try It Out 8-6 . 201

Hangman . 201
Try It Out 8-7 . 205

Fraction Tutor . 206
Try It Out 8-8 . 210

Summary . 210
Problems . 211

xiv Contents in Detail

9
LiStS 213
Lists in Scratch . 214

Creating Lists . 214
Try It Out 9-1 . 216

List Commands . 216
Try It Out 9-2 . 218

Bounds Checking . 219
Dynamic Lists . 220

Filling Lists with User Input . 220
Creating a Bar Chart . 221

Try It Out 9-3 . 224
Numerical Lists . 224

Finding Min and Max . 224
Try It Out 9-4 . 225

Finding the Average . 225
Try It Out 9-5 . 226

Searching and Sorting Lists . 226
Linear Search . 226
Frequency of Occurrence . 227

Try It Out 9-6 . 228
Bubble Sort . 229

Try It Out 9-7 . 231
Finding the Median . 231

Scratch Projects . 232
The Poet . 232

Try It Out 9-8 . 233
Quadrilateral Classification Game . 234

Try It Out 9-9 . 235
Math Wizard . 236

Try It Out 9-10 . 239
Flower Anatomy Quiz . 239
Other Applications . 240

Try It Out 9-11 . 241
Summary . 241
Problems . 242

aPPendix
Sharing and coLLaboration 243
Creating a Scratch Account . 243
Using the Backpack . 246
Creating Your Own Project . 247

Starting a New Project . 247
Remixing a Project . 249
The Project Page . 249
Sharing Your Project . 250

index 251

a c k n o w L e D g m e n t S

Although the book’s cover shows a single author, many people have had a
hand in its creation. I would like to acknowledge the many professionals
at No Starch Press who contributed to this work. Special thanks go to my
editor, Jennifer Griffith-Delgado, and my production editor, Alison Law,
for their significant contributions. Their helpful suggestions and expertise
have led to a greatly improved book, and their commitment to excellence
appears on every page. I would also like to thank Paula L. Fleming and
Serena Yang for their work on the book.

I am truly grateful for the valuable feedback provided by the techni-
cal editor, Tyler Watts. His thoughtful suggestions have, in many instances,
made their way into the book.

My final thanks go to my wife, Marina, and my two sons, Asad and
Karam, who supported me throughout this long project. They’ve put up
with so much to give me the time and space I needed. Maybe now I can
catch up with the things I’ve missed!

i n t r o D u c t i o n

Scratch is a visual programming language that pro-
vides a rich learning environment for people of all
ages. It allows you to create interactive, media-rich
projects, including animated stories, book reports,
 science projects, games, and simulations. Scratch’s
visual programming environment enables you to explore areas of knowl-
edge that would otherwise be inaccessible. It provides a full set of multi-
media tools you can use to create wonderful applications, and you can do
so more easily than with other programming languages.

In many ways, Scratch promotes problem-solving skills—important in
all areas of life, not just programming. The environment provides immedi-
ate feedback, allowing you to check your logic quickly and easily. The visual
structure makes it a simple matter to trace the flow of your programs and
refine your way of thinking. In essence, Scratch makes the ideas of com-
puter science accessible. It makes learning intrinsically motivating; fosters
the pursuit of knowledge; and encourages hands-on, self-directed learning
through exploration and discovery. The barriers to entry are very low, while
the ceiling is limited only by your creativity and imagination.

xviii Introduction

A lot of books claim to teach you how to program using Scratch. Most
target very young readers and present only a few simple applications that
guide the reader through Scratch’s user interface. These books are more
about Scratch than programming. The goal of this book, by contrast, is to
teach fundamental programming concepts using Scratch as a tool, as well
as to unveil the capabilities of Scratch as a powerful vehicle for both teach-
ing and learning.

whom this book is for
This book is for anyone eager to explore computer science. It teaches the
fundamentals of programming, and it can be used as a textbook for middle
and high school students or as a self-study guide. The book can also be used
at the college level to teach elementary programming concepts to students
from different backgrounds or as a companion textbook that provides an
introduction to such a course.

Teachers who want to use Scratch in the classroom can also benefit
from the deeper understanding of programming to be found in this book.
You’ll develop the skills you need to engage students with Scratch in mean-
ingful ways that are compatible with their needs.

The book assumes no prior programming experience and, for the
most part, no mathematics beyond what is taught in high school. Some of
the advanced simulations can be skipped without causing any learning gap.

a note to the reader
The beauty of being a programmer is that you can create. Think about it:
You come up with an idea and use your keyboard for a couple of hours, and
a new software project comes to life! Like any new skill, however, program-
ming takes practice. Along the way, you’ll most likely make mistakes—but
don’t give up. Take time to reflect on the concepts and experiment with
different techniques until you master them. And then move on to learn
something new.

features
This book provides a hands-on, problem-solving approach to learn-
ing programming and related concepts in computer science. With
this approach, I hope to cultivate readers’ imaginations and make the
computer-programming experience available to everyone.

With that in mind, the book is project oriented. I’ll present concepts
with detailed explanations, and then together, we’ll develop a number
of applications that illustrate those concepts. The emphasis is on problem
solving rather than on Scratch’s particular features.

Introduction xix

The examples presented in these pages demonstrate the wide range
of knowledge you can explore using Scratch. These examples were selected
carefully to explain programming concepts and to show how you can use
Scratch to increase your understanding of other topics.

The Try It Out exercises and the problems at the end of each chapter
are designed to challenge your programming skills. They also suggest new
ideas that incorporate the studied concepts into larger problems. I encour-
age you to attempt these exercises and to come up with your own program-
ming problems. Solving problems of your own shows that you’ve developed
a solid understanding of programming.

organization of this text
The first three chapters of this book introduce Scratch as a powerful tool
for drawing geometric shapes and creating media-rich applications. They’ll
get you started quickly and easily, while the rest of the book focuses on the
programming constructs supported in Scratch.

Chapter 1: Getting Started introduces Scratch’s programming envi-
ronment, the available command blocks, and the process of creating
simple programs.

Chapter 2: Motion and Drawing reviews the motion commands and
introduces Scratch’s drawing capabilities.

Chapter 3: Looks and Sound discusses Scratch’s sound and graphics
commands.

Chapter 4: Procedures introduces procedures as a way to write struc-
tured, modular programs. We jump into procedures here to enforce
good programming style from the beginning.

Chapter 5: Variables explores how you can use variables to keep track
of information. This chapter also explains how to ask users questions
and get answers, paving the way for building a wide range of interactive
applications.

Chapter 6: Making Decisions outlines decision making and controlling
the flow of programs.

Chapter 7: Repetition: A Deeper Exploration of Loops discusses in
detail the repetition structures available in Scratch and explains how
to use them through concrete examples.

Chapter 8: String Processing discusses the string data type and pres-
ents a collection of useful string-manipulation routines.

Chapter 9: Lists introduces lists as containers of items and demon-
strates how you can use them to create powerful programs.

xx Introduction

All chapters also include several complete projects that can be used as
a guide for creating similar applications in many learning settings. By the
time you finish this book, you should be able to tackle just about any pro-
gramming project on your own!

conventions used
We use a few text styles to correspond with the text in the Scratch interface:

•	 Scratch block names are in this style: when green flag clicked.

•	 Sprite names and variables are in this style: Ball.

The file(s) that you need when reading a particular section are named
in the margin (see the example on the left), and Try It Out exercises are
shown like this:

online resources
Visit http://nostarch.com/learnscratch/ to download the extra resources for this
book. Once you’ve downloaded and unzipped the file, you’ll see the follow-
ing materials:

Bonus Applications This folder contains bonus Scratch applications
that you can study on your own. The file Bonus Applications.pdf walks
you through them with detailed explanations.

Chapter Scripts This folder contains all the scripts mentioned in
the book.

Extra Resources This folder contains three PDF files that provide
more in-depth information on special topics (the Paint Editor, math-
ematical functions, and drawing geometric shapes) that you may be
interested in.

Solutions This folder contains the solutions to all problems and
Try It Out exercises in the book.

errata and updates
We’ve done our best to make sure that the book contains accurate informa-
tion. However, to err is human. Visit http://nostarch.com/learnscratch/ for the
latest updates.

Filename .sb2

t ry i t ou t

This is something for you to try .

1
g e t t i n g S t a r t e D

Have you ever wanted to create your own computer
game, animated story, tutorial, or science simulation?
Scratch is a graphical programming language that
makes it easy to create those applications and more.
In this introductory chapter, you will:

•	 Explore Scratch’s programming environment

•	 Learn about different types of command blocks

•	 Create your first game in Scratch

When you make a Scratch application, you can save it on your computer
or upload it to the Scratch website, where others can comment on it and
remix it into new projects.

Excited? Then let’s get started!

2 Chapter 1

what is Scratch?
A computer program is just a set of instructions that tell a computer what
to do. You write these instructions using a programming language, and that’s
where Scratch comes in.

Most programming languages are text based, which means you have to
give the computer commands in what looks like a cryptic form of English.
For example, to display “Hello!” on the screen, you might write:

print('Hello!') (in the Python language)
std::cout << "Hello!" << std::endl; (in the C++ language)
System.out.print("Hello!"); (in the Java language)

Learning these languages and understanding their syntax rules can
be challenging for beginners. Scratch, on the other hand, is a visual pro-
gramming language. It was developed in the Massachusetts Institute of
Technology (MIT) Media Lab to make programming easier and more fun
to learn.

In Scratch, you won’t type any complicated commands. Instead, you’ll
connect graphical blocks together to create programs. Confused? Look at
the simple program in Figure 1-1, and I’ll explain.

A Scratch program that
contains a single block.

The result of running
the program.

Figure 1-1: When you run this Scratch block, the
cat says “Hello!” in a speech bubble .

The cat that you see in Figure 1-1 is called a sprite. Sprites understand
and obey sets of instructions that you give them. The purple block on the left
tells the cat to display “Hello!” in a speech bubble. Many of the applications
you’ll create in this book will contain multiple sprites, and you’ll use blocks
to make sprites move, turn, say things, play music, do math, and so on.

You can program in Scratch by snapping those color-coded blocks
together as you would puzzle pieces or LEGO bricks. The stacks of blocks
that you create are called scripts. For example, Figure 1-2 shows a script that
changes a sprite’s color four times.

First
time

Second
time

Third
time

Fourth
time

Figure 1-2: Using a script to change the Cat sprite’s color

Getting Started 3

This script waits for one second between color changes, and the four
cats you see here show the sprite’s new color after each change.

This book covers Scratch 2, which was released in May 2013. This ver-
sion allows you to create projects directly in your web browser so you don’t
have to install any software on your computer, and we’ll rely on Scratch’s
web interface for the material in this book.

Now, that you know a little about this language, it’s time to kick off our
programming journey and learn how to use it.

Scratch Programming environment
To start Scratch, go to the Scratch website (http://scratch.mit.edu/) and click
the TRY IT OUT link. This should take you to Scratch’s project editor inter-
face, shown in Figure 1-3.

Stage

Sprite List

Scripts Area

Bl
oc

ks
 P

al
et

te

Menu Bar Cursor Tools

Ti
ps

 W
in

do
w

Tabs

Backpack (visible only if you are logged in)

Figure 1-3: The Scratch user interface, where you’ll build your programs

t ry i t ou t 1-1

Though we haven’t discussed the blocks in Figure 1-2 yet, read them, look at their
shapes, and try to figure out the steps the script took to make the cat teal . (Hint:
The first purple block returns the cat to its original color .) What do you think would
happen if we removed the wait block from the script?

http://scratch.mit.edu/

4 Chapter 1

You should see a single window with at least the following three panes:
the Stage (top left), the Sprite List (bottom left), and the Scripts tab (right),
which contains the Blocks tab and the Scripts Area. The right pane also con-
tains two additional tabs, Costumes and Sounds, which will be discussed later
in this section. If you’re logged into an account on the Scratch website, you
should also see the Backpack (bottom right), which has buttons that let you
share your project and use sprites and scripts from existing projects.

Let’s take a quick look at the three main panes.

The Stage
The Stage is where your sprites move, draw, and interact. The Stage is
480 steps wide and 360 steps tall, as illustrated in Figure 1-4. The center
of the Stage has an x -coordinate of 0 and a y -coordinate of 0.

x

y

240

180

–180

–240 (0,0)

AB

C D

Stop

Green flagProject name

Presentation mode

Mouse (x,y)
Display
Area

x: 150 y: 100

Mouse cursor

Figure 1-4: The Stage is like a coordinate plane with point (0,0) in the center .

You can find the (x,y) coordinates of any point on the Stage by moving
the mouse cursor to that point and watching the numbers in the Mouse
(x,y) Display Area, located directly below the Stage.

The small bar located above the Stage has several controls. The
Presentation mode icon u hides all scripts and programming tools and
makes the Stage area take up almost your entire monitor. The edit box v
shows the name of the current project. The green flag w and stop x icons
let you start and end your program.

t ry i t ou t 1-2

Move the mouse around the Stage and watch the Mouse Display Area . What
happens when you move the mouse outside the Stage area? Now, switch to
Presentation mode and watch how the screen changes . Click the icon in the
top left of the screen or press esc on your keyboard to exit Presentation mode .

Getting Started 5

Sprite List
The Sprite List displays names and thumbnails for all the sprites in your
project. New projects begin with a white Stage and a single cat-costumed
sprite, as illustrated in Figure 1-5.

Choose a sprite from library.

Paint new sprite.

Upload sprite from file.

Get new sprite from camera.

Thumbnail for Sprite1

Use these buttons to create a
new backdrop.

Click the button to display
sprite information.

Thumbnail for
the Stage

Figure 1-5: The Sprite List for a new project

The buttons above the Sprite List let you add new sprites to your project
from one of four places: Scratch’s sprite library u, the built-in Paint Editor
v (where you can draw your own costume), a camera connected to your
computer w, or your computer x.

Each sprite in your project has its own scripts, costumes, and sounds.
You can select any sprite to see its belongings. Either (1) click the sprite’s
thumbnail in the Sprite List or (2) double-click the sprite itself on the Stage.
The currently selected sprite thumbnail is always highlighted and outlined
with a blue border. When you select a sprite, you can access its scripts, cos-
tumes, and sounds by clicking one of the three tabs located above the Scripts
Area. We’ll look at the contents of these tabs later. For now, right-click (or
ctrl-click if you’re using a Mac) the Cat sprite’s thumbnail to see the pop-
up menu shown in Figure 1-6.

The duplicate option u copies the sprite and gives the copy a different
name. You can remove a sprite from your project with delete v, and you can
export a sprite to a .sprite2 file on your computer using the save to local file
option w. (To import an exported sprite into another project, just click the
Upload sprite from file button shown in Figure 1-5.) The hide/show option
x allows you to change whether a sprite on the Stage is visible or not.

t ry i t ou t 1-3

Add new sprites to your project using some of the buttons located above the
Sprite List . Rearrange the sprites in the Sprite List by dragging their corresponding
thumbnails .

6 Chapter 1

Create a new replica of the sprite that has
the same scripts, costumes, and sounds.

Delete the sprite from the project.

Save the sprite (along with its costumes,
sounds, and scripts) to a file.
Hide/show the sprite.

Figure 1-6: Right-clicking a sprite’s thumbnail shows this handy menu .

Along with thumbnails for your sprites, the Sprite List also shows a
thumbnail of the Stage to the left (see Figure 1-6). The Stage has its own
set of scripts, images, and sounds. The background image you see on the
Stage is called a backdrop. When you start a new project, the Stage defaults
to a plain, white backdrop, but you can add new backdrop images with any
of the four buttons below the Stage’s thumbnail. Click on the Stage icon in
the Sprite List to view and edit its associated scripts, backdrops, and sounds.

Blocks Tab
Blocks in Scratch are divided into 10 categories (palettes): Motion, Looks,
Sound, Pen, Data, Events, Control, Sensing, Operators, and More Blocks. Blocks
are color coded to help you find related blocks easily. Scratch 2 has more
than 100 blocks, though some blocks only appear under certain conditions.
For example, blocks in the Data palette (discussed in Chapters 5 and 9)
appear only after a variable or a list is created. Let’s look at the various
 components of the Blocks tab in Figure 1-7.

The top part of the Blocks tab shows the
ten groups of blocks. Click each category
to see the blocks that exist in that category.

.

The bottom part shows the available blocks
in the currently selected category.

Current selection (highlighted)

Figure 1-7: An enlarged view of the Blocks tab

Try clicking a block to see what it does. If you click move 10 steps on
the Motion palette, for example, the sprite will move 10 steps on the Stage.
Click it again, and the sprite moves another 10 steps. Click the say Hello!

Getting Started 7

for 2 secs block (in the Looks palette) to make the sprite display “Hello!”
in a speech bubble for two seconds. You can also access the help screen of a
block by selecting Block help (the question mark icon) from the toolbar and
clicking the block you’re confused about.

Some blocks require one or more inputs (also called arguments) that
tell the block what to do. The number 10 in the move 10 steps block is an
example of an argument. Look at Figure 1-8 to see the different ways blocks
let you change their inputs.

Figure 1-8: Changing the inputs of different types of blocks

You can change the number of steps in move 10 steps by clicking the
white area where you see the 10 and entering a new number u, perhaps 30
as you see in Figure 1-8. Some blocks, like point in direction 90, also have
pull-down menus for their inputs v. You can click the down arrow to see
a list of available options and select one. This particular command has a
white editable area, so you could also just type a value inside the white box.
Other blocks, like point towards w, will force you to choose a value from
the drop-down menu.

Scripts Area
To make a sprite do interesting things, you need to program it by dragging
blocks from the Blocks tab to the Scripts Area and snapping them together.
When you drag a block around the Scripts Area, a white highlight indicates
where you can drop that block to form a valid connection with another block
(Figure 1-9). Scratch blocks only snap together in certain ways, eliminating
the typing errors that tend to occur when people use text-based program-
ming languages.

t ry i t ou t 1- 4

Go to the Looks palette, change the values of block inputs, and click the blocks
to see what they do . For example, experiment with the set color effect to block .
Try numbers like 10, 20, 30, and so on until the cat returns to its original color . Try
the options in the drop-down menu with different numbers . You can click the clear
graphic effects block (also in the Looks palette) to remove your changes .

8 Chapter 1

Drag
Scripts Area

A white highlight
indicates where you can
drop the block to form a

connection.

Figure 1-9: Drag blocks into the Scripts Area and snap them together
to create scripts .

You don’t need to complete scripts to run them, which means that you
can test your script as you build it. Clicking anywhere on a script, complete
or partial, runs the entire script, from top to bottom.

You can also easily disassemble a stack of blocks and test each individu-
ally. This will be an invaluable strategy when you’re trying to understand
long scripts. To move an entire stack of blocks, grab the top block of the
stack. To detach a block in the middle of a stack and all the blocks below it,
grab it and drag it. Go ahead and try this out.

This feature also allows you to build your project one piece at a time.
You can connect small chunks of blocks, test them to make sure they work
as intended, and then combine them into larger scripts.

t ry i t ou t 1-5

Start a new Scratch project and create the script below for the Cat sprite . (The
forever block is in the Control palette, and the other blocks are in the Motion
palette .)

This yellow border
indicates that the
script is running.

You’ll learn about most of these blocks in Chapter 2 . For now, click your new
script to run it . (Scratch should highlight the running script with a glowing yellow
border, as shown in the right side of the image .) You can even change a block’s
inputs and add new blocks to a script while it runs! For example, change the num-
ber in the move block and watch how the cat’s motion changes . Click the script
one more time to stop it .

Getting Started 9

You can even copy a stack of blocks from one sprite to another. Just
drag the stack from the Scripts Area of the source sprite to the thumbnail
of the destination sprite in the Sprite List.

Costumes Tab
You can change what a sprite looks like by changing its costume, which is
just an image. The Costumes tab contains everything you need to organize
your sprite’s costumes; you could think of it like a clothes closet. The closet
can have many costumes, but a sprite can wear only one at a time.

Let’s try changing the Cat sprite’s costume now. Click the thumbnail
of the Cat sprite and select the Costumes tab. As illustrated in Figure 1-10,
the Cat has two costumes: costume1 and costume2. The highlighted costume
(costume1 in this case) represents the sprite’s current costume.

The highlighted costume represents the
sprite’s current costume.

Click on a costume’s thumbnail to make
it the current costume.

Use these buttons to add a new costume
to the sprite.

Use this edit box to change the name of
the selected costume.
Click the x to delete the costume.

You can change the order of the
costumes by dragging and moving
the thumbnails.

Figure 1-10: You can organize all the costumes for a sprite from the Costumes tab .

If you right-click on a costume’s thumbnail, you’ll see a pop-up menu
with three options: (1) duplicate, (2) delete, and (3) save to local file. The
first option adds a new costume with an image identical to that of the cos-
tume you duplicated. The delete option deletes the selected costume. The
last option allows you to save the costume to a file. You can import that cos-
tume and use it in a different project using the Upload costume from file
button (the third button in Figure 1-10). Go ahead and try these options out.

t ry i t ou t 1-6

Add another sprite to your project . Drag the script from the Cat sprite and drop it
over the thumbnail of the new sprite . Your mouse arrow must be on top of the new
sprite’s thumbnail for the drop to succeed . Check the Scripts tab of the new sprite
to make sure that it has an identical copy of the script .

10 Chapter 1

Sounds Tab
Sprites can also play sounds, which liven up your programs. You can, for
example, give a sprite different sounds to use when it’s happy or sad. If your
game contains a sprite that looks like a missile, you could make the missile
generate different sounds when it hits or misses a target.

The buttons in the Sounds tab will help you organize the different
sounds your sprites can play. As shown in Figure 1-11, Scratch even provides
a tool you can use to edit sound files. I won’t discuss the details of this tool
in this book, but I encourage you to experiment with it on your own.

This sound file is
0.8 seconds.

Use these buttons to add a new sound to the sprite.

You can type a different name for the sound.

Play, Stop, and Start/Stop
recording buttons.

Figure 1-11: The Sounds tab allows you to organize the sounds of a sprite .

Most of the time, you’ll need only the three buttons at the top of the
Sounds tab. They allow you to choose a sound from Scratch’s sound library
u, record a new sound v (if you have a microphone), or import an exist-
ing sound file from your computer w. Scratch can read only MP3 and WAV
sound files.

t ry i t ou t 1-7

Click the first button above the cat’s image in Figure 1-10 to choose a new cos-
tume from Scratch’s library . Then select any image you like from the window that
appears . Apply some of the tips in Figure 1-10 to become more familiar with the
costume options .

t ry i t ou t 1-8

Select the Sounds tab and click the Choose sound from library button . Listen to
the various sounds that are available in Scratch to get some ideas for your future
projects .

Getting Started 11

Backdrops Tab
When you select the thumbnail of the Stage in the Sprite List, the name
of the middle tab changes from Costumes to Backdrops. Use this tab to orga-
nize the Stage’s background images, which you can change with your scripts.
For example, if you’re creating a game, you might show one backdrop with
instructions to begin and then switch to another when the user starts the
game. The Backdrops tab is identical to the Costumes tab.

Sprite Info
You can view the sprite info area by clicking the small icon at the top-left
edge of a sprite’s thumbnail, as illustrated in Figure 1-12. This area shows
the sprite’s name, its current (x,y) position and direction, its rotation style
and visibility state, and whether it can be dragged in Presentation mode.
Let’s briefly talk about each of these options.

Click this icon to
see the sprite’s
information.

Figure 1-12: Sprite info area

The edit box u at the top of this area allows you to change the sprite’s
name. You’ll use this box many times in this book.

The x and y values v show the sprite’s current position on the Stage.
Drag the sprite onto the Stage and watch what happens to these numbers.

The sprite’s direction w indicates which direction the sprite will move
in response to a movement block. Drag the blue line emanating from the
center of the circle icon to rotate the sprite.

The three rotation-style buttons x (named Rotate, Left-right flip,
and No rotate) control how the costume appears as the sprite changes
its direction. To understand the effect of these buttons, create the script

t ry i t ou t 1-9

Click the Choose backdrop from library button below the thumbnail of the Stage in
the Sprite List . Select the xy-grid backdrop from the window that appears and click
OK . Scratch will add the xy-grid to your project and make it the default backdrop .
(The xy-grid shows a 2-D Cartesian plane, which is useful when you’re working
with the Motion command blocks .) Repeat these steps and select any other back-
drop that you like .

12 Chapter 1

shown in Figure 1-13 and then click each of these
buttons while the script is running. You can find
the wait block in the Control palette.

The Can drag in player checkbox y indi-
cates whether or not the sprite can be dragged
(using the mouse) in Presentation mode. Switch
to Presentation mode with this box checked/
unchecked and try to drag the sprite across the
Stage to understand the effect of this checkbox.

The Show checkbox z allows you to show/hide
the sprite at program design time. Try it out and see
what happens. You’ll see several examples of hidden
sprites that do useful work behind the scenes in many
examples throughout this book.

Toolbar
Let’s take a quick look at Scratch’s toolbar in Figure 1-14, starting with some
of the buttons. (The toolbar will look slightly different if you are signed in,
as covered in Appendix A.) Use the Duplicate and Delete buttons to copy
and remove sprites, costumes, sounds, blocks, or scripts. The Grow button
makes sprites bigger, while the Shrink button makes them smaller. Just click
the button you want to use and then click on a sprite (or a script) to apply
that action. To return to the arrow cursor, click on any blank area of the
screen. You can use the Language menu to change the language of the
user interface.

Duplicate

Delete

Grow

Shrink

Language

Go to Scratch website

Figure 1-14: Scratch’s toolbar

From the File menu, you can create new projects, upload (open) an
existing project from your computer, download (save) the current project
to your computer, or revert (undo) all your changes to the current project.
Scratch 2 projects have an .sb2 file extension to distinguish them from proj-
ects created in the previous version of Scratch (.sb).

Figure 1-13: Script for
demonstrating rotation
styles

Getting Started 13

In the Edit menu, Undelete will bring back the last block, script,
sprite, costume, or sound you deleted. The Small stage layout option
shrinks the Stage and gives the Scripts Area more room. Selecting Turbo
mode increases the speed of some blocks. For example, executing a move
block 1,000 times may take about 70 seconds in normal mode and about
0.2 seconds in Turbo mode.

Now that you’ve seen the essentials of the Scratch toolbar, we’ll talk
briefly about Scratch’s built-in Paint Editor.

Paint editor
You can use the Paint Editor (Figure 1-15) to create or edit costumes and
backdrops. (Of course, you’re free to use your favorite image-editing pro-
gram, too.) If you want to learn more about Scratch’s Paint Editor, check
out ScratchPaintEditor.pdf (located in the online resources, which can be
downloaded from http://nostarch.com/learnscratch/).

Set costume
center

Transparent
color

Figure 1-15: Scratch’s Paint Editor

For now, there are two important features you’ll need to know about:
setting the center of an image and setting the transparent color. I’ll explain
these features in the following sections.

Setting the Center of an Image
When you command a sprite to turn (left or right), it will turn with respect
to a reference point—the center of its costume. The Set costume center
button (in the upper-right corner of the Paint Editor) allows you to choose
that center. When you click this button, you’ll see crosshairs on the drawing

14 Chapter 1

area, as shown in Figure 1-16. The center point is determined by the inter-
section of these two axes, so to shift a costume’s center, just drag them to a
new position. To hide the axes, click the same button again.

The center of rotation is
determined by the intersection
of these two axes. You can
change the center of rotation
by dragging these axes or by
clicking the mouse on the
desired center point.

Figure 1-16: Changing a costume’s center after clicking the
Set costume center button

Setting Transparent Color
When two images overlap, the top image will cover some part of the bottom
image. Similarly, sprites cover parts of the Stage. If you want to see what
the Stage looks like behind an image, you need to use the Paint Editor to
make at least part of that image transparent, as the penguin on the right is
in Figure 1-17.

In the Color palette, just click the square with a diagonal red line and
paint with that “transparent” color to make something invisible. You can
think of this icon as a “No Color” sign, similar to a “No Smoking” sign with
a red bar across a cigarette.

t ry i t ou t 1-10

Open RotationCenter.sb2 and run it . This application contains a single sprite with
the costume and script shown below . The costume center is set in the middle of the
square . Run the script and notice the pattern . Then edit the costume to set its center
in the middle of the circle and run the script again to see how the picture changes .

RotationCenter
 .sb2

Getting Started 15

This part of the image has a
white color.

This is what we see when
we paint the white part with
the transparent color.

Use this color to
make any part of an

image transparent.

This grid is the backdrop of
the Stage.

Figure 1-17: You can make any part of an image transparent by filling it with the “trans-
parent” color .

Now that you know your way around the Scratch interface, we’ll put
that knowledge to good use and make something fun. Roll up your sleeves
and get ready: We’re making a game!

Your first Scratch game
In this section, you’ll create a single-player game in which players will move
a paddle to keep a bouncing tennis ball from hitting the floor, based on the
classic arcade game Pong. The user interface for our game is illustrated in
Figure 1-18.

When the game begins, the
ball starts here and moves
down at a random angle.

When the ball hits the
paddle, it bounces back
up at a random angle.

Use the mouse to move the
paddle horizontally.

If the ball touches this part of
the Stage, the game is over.

Figure 1-18: Our game screen

As shown in the figure, the ball starts at the top of the Stage and
moves down at some random angle, bouncing off the edges of the Stage.
The player moves the paddle horizontally (using the mouse) to send the
ball back up. If the ball touches the bottom of the Stage, it’s game over.

We’ll build this game one step at a time, but first we need to open a fresh
project. Select File4New to start a new Scratch project. Then delete the Cat
sprite by right-clicking it and selecting delete from the pop-up menu.

Pong .sb2

Pong_NoCode
 .sb2

16 Chapter 1

Step 1: Prepare the Backdrop
To detect when the ball misses the paddle, we’ll mark the bottom of the
Stage with a certain color and use the touching color ? block (from the
Sensing palette) to tell us when the ball touches that color. Our current
backdrop is white, so we can just draw a thin, colored rectangle at the
 bottom, as shown in Figure 1-19.

Select the
Rectangle tool.

Select
the color.

Select filled
rectangle.

Click the mouse and move it to
draw the rectangle. You can use
the handles to adjust the size.

Figure 1-19: The steps for drawing a rectangle at the bottom of
the backdrop image

Click the thumbnail of the Stage to select it and then go to the Backdrops
tab. Follow the steps in Figure 1-19 to draw a thin rectangle at the bottom of
the Stage’s backdrop.

Step 2: Add the Paddle and Ball
Click the Paint new sprite button above the Sprite List to add the Paddle
sprite to your project. Since the paddle is just a thin, short rectangle, repeat
what you did in Step 1 to draw a paddle like the one in Figure 1-18. Color
the paddle any way you want and set the center approximately in the middle
of the rectangle.

Next, name the sprite something that explains what it is; I called it Paddle.
Also, click the paddle image on the Stage and move it so that its y-coordinate
is about –120.

Our game has a paddle now, but we still need a ball to bounce around,
so click Choose sprite from library above the Sprite List to import one.
In the dialog that appears, click the Things category and select the Tennis
Ball image to add that sprite to your project. Rename the sprite as Ball.

Before you start working on scripts for the game, select File4Download
to your computer to save what you’ve done so far to your computer. In the
dialog that appears, select the folder where you want to save your work,

Getting Started 17

name the file Pong.sb2, and click Save. If you are currently signed in, you
can also save your work on the cloud (that is, on a Scratch server). Whether
you decide to save your files locally (on your computer) or on the cloud,
make sure to save your work often.

With the Paddle and Ball sprites, the Stage should look similar to
Figure 1-18. If you encounter any difficulties at this time, you can open
the file Pong_NoCode.sb2, which contains everything we just created. You’ll
add the scripts to run the game next, but don’t worry too much about the
details of the blocks. We’ll explore all of them later in the book, so for now,
let’s focus on learning to put a complete project together.

Step 3: Start the Game and Get Your Sprites Moving
As the designer for this game, you’ll decide how players can start a new
round. For example, the game could begin when you press a key, click a
sprite on the Stage, or even clap or wave your hands (if you have a webcam).
The green flag icon (located above the Stage) is another popular option,
which we’ll use here.

The idea is simple. Any scripts that start with the when green flag
clicked trigger block start running when you press that button. The flag
turns bright green and stays that way until the scripts finish. To see this in
action, create the script shown in Figure 1-20 for the Paddle sprite.

From the Events palette.

From the Motion palette.

From the Control palette.

First, drag a set x to 0 block from the Motion palette.
Then drag a mouse x block from the Sensing palette
and drop it over the number 0.

Figure 1-20: The script for the Paddle sprite

When the green flag is clicked u, the go to x: y: block v sets the pad-
dle’s vertical position to –120, just in case you previously moved it with the
mouse. The paddle should hover just above the pink rectangle at the bot-
tom of the Stage, so if your rectangle is thicker, change its position number
to something that works for your design.

The script then uses a forever block w to constantly check the mouse
position. We’ll move the paddle back and forth by matching the paddle’s
x -position to that of the mouse x. Run the script (by clicking the green flag
icon) and try moving your mouse horizontally; the paddle should follow.
Click the stop icon next to the green flag to stop the script.

The script for the Ball sprite is a little longer than the previous one, so
I’ll break it down into simple chunks. The ball should start moving when we
click the green flag, so first, add the script in Figure 1-21 to the Ball sprite.

18 Chapter 1

135°225° 180°

Move to the top
of the Stage.

Pick a random angle
between 135 and 225.

Start moving. Bounce
away if you touch an
edge of the Stage.

Figure 1-21: The first part of the Ball sprite script

First, we move the ball to the top of the stage u and make it point down
at a random angle using the pick random block v (from the Operators pal-
ette). The script then uses a forever block w to move the ball x across the
Stage and bounce y off the edges. Click the green flag to test what you’ve
written so far. The ball should move in a zigzag pattern, and the paddle
should still follow your mouse.

Now, it’s time to add the fun part—the blocks that make the ball
bounce off the paddle. We can modify the forever block we just created
so the ball travels upward when it hits the paddle, as shown in Figure 1-22.

–30° 30°0°

1) Drag an if block from the Control palette.
2) Drag a touching ? block from the Sensing

palette over the hexagon slot of the if block.
Click the down arrow in the touching ? block
and select Paddle from the drop-down menu.

Figure 1-22: Adding code to kick the ball up

When the ball and paddle touch, we command the ball to point in a ran-
dom direction between –30 and 30. When the forever block goes for the next
round, it will execute the move block, which will now cause the ball to go up.
Click the green flag again to test this part of the game. Click the stop icon
when you are sure the ball is bouncing off of the paddle as it’s supposed to.

The only piece we’re missing now is some code to stop the game when
the ball touches the bottom of the Stage. Add the script shown in Figure 1-23

t ry i t ou t 1-11

Replace the 12 inside the move block with different values, run the script, and
watch what happens . This should give you an idea of how to make the game
easier or harder to play . Click the stop icon when you’re done .

Getting Started 19

to the Ball sprite, either right before or after the if block in Figure 1-22. You’ll
find the touching color ? block in the Sensing palette and the stop block in
the Control palette.

This block is from the
Control palette.

Click the mouse on the color square. Then
click the light pink color area of the Stage.

Figure 1-23: The blocks for ending the game

When you click the mouse over the colored square inside the touching
color ? block, the cursor will change to a hand cursor. When you move that
cursor and click over the light pink rectangle at the bottom of the Stage,
the colored square inside the block should match the rectangle’s color. The
stop all block does exactly what its name says: It stops all running scripts in
all sprites, and the Paddle and the Ball sprites are no exception.

This basic pong game is now fully functional. Click the green flag and
play it a couple of times to test it out. After seeing that you can create a
whole game with such a small amount of code, I hope you agree with me
that Scratch is amazing!

Step 4: Spice It Up with Sound
Of course, games are more fun when they have sound, so let’s add one final
touch to play a noise every time we hit the ball.

Double-click the ball on the Stage to select it and then select the Sounds
tab. Click the Choose sound from library button to add a sound to the Ball
sprite. In the dialog that appears, select the Effects category, choose the
pop sound, and click OK to add it to the Sounds tab. After that, go back to
the Scripts tab and insert a play sound block (from the Sound palette), as
shown in Figure 1-24.

This block is from the Sound palette.

Figure 1-24: Playing a sound when the ball touches the paddle

Test the game once more, and this time, you should hear a short “pop”
every time the ball touches the paddle.

Congratulations! Your game is now complete (unless, of course, you
want to add more features to it), and you just wrote your first Scratch pro-
gram. If you’d like to experiment some more, try duplicating the Ball sprite
to have two (or more) balls in your game and see how that changes the way
you play!

20 Chapter 1

In the next section, I’ll introduce the different types of blocks available
in Scratch. As you continue through this book, you’ll really dig into how
those blocks work, but for now, we’ll just go over them briefly.

Scratch blocks: an overview
In this section, you’ll learn about the different blocks available in Scratch,
their names, and their intended usage. The goal is to define some of the
terms that you’ll read in the next chapters. You can come back to this sec-
tion as you progress if you need to refresh your memory.

As shown in Figure 1-25, Scratch has four kinds of blocks: command
blocks, function blocks, trigger blocks, and control blocks. Command blocks
and control blocks (also called stack blocks) have bumps on the bottom and/or
notches on the top. You can snap these blocks together into stacks. Trigger
blocks, also called hats, have rounded tops because they are placed at the top
of a stack. Trigger blocks connect events to scripts. They wait for an event—
such as a key press or mouse click—and run the blocks underneath them
when that event happens. For example, all scripts that start with the when
green flag clicked block will run when the user clicks the green flag icon.

Have openings to
hold other blocks.

Command Blocks Function Blocks Trigger Blocks Control Blocks

Have a notch on the
top and a matching
bump on the bottom.

Do not have notches.
Return a value.

Have a rounded top.
Run blocks below them.

Scratch Blocks

Figure 1-25: The four types of blocks available in Scratch

Function blocks (also called reporters) don’t have notches or bumps. They
can’t form a layer of a script alone; instead, they’re used as inputs to other
blocks. The shapes of these blocks indicate the type of data they return.
For example, blocks with rounded ends report numbers or strings, whereas
blocks with pointed ends report whether something is true or false. This is
illustrated in Figure 1-26.

Function blocks with rounded ends
report numbers or strings.

Function blocks with pointed ends report
Boolean (true/false) values.

Figure 1-26: The shape of a function block indicates
the type of data it returns .

Getting Started 21

Some function blocks have a checkbox next to them. If you check
the box, a monitor appears on the Stage to display the current value of the
reporter. Select a sprite and check the box on the x position block (in the
Motion palette). Then drag the sprite around the Stage and watch that mon-
itor. It should change as you move the sprite back and forth.

arithmetic operators and functions
Now, let’s take a quick look at the arithmetic operators and functions sup-
ported in Scratch. If you’ve lost your calculator, then your worries are over!
You could make your own calculator in Scratch with the blocks from the
Operators palette, which you’ll explore in this section.

Arithmetic Operators
Scratch supports the four basic arithmetic operations of addition (+),
subtraction (-), multiplication (*), and division (/). The blocks used to
perform these operations, called operators, are shown in Figure 1-27. Since
these blocks produce a number, you can use them as inputs to any block
that accepts numbers, as demonstrated in this figure.

Operator

Example

Addition Subtraction Multiplication Division

Figure 1-27: Arithmetic operators in Scratch

Scratch also supports the modulus (mod) operator, which returns
the remainder of the division of two numbers. For example, 10 mod 3
returns 1 because the remainder of dividing 10 by 3 is 1. A common use of
the modulus operator is to test the divisibility of one integer (whole number)
by another (smaller) integer. A modulus of 0 indicates that the larger num-
ber is divisible by the smaller number. Does this give you an idea for check-
ing whether a number is even or odd?

Another useful operator supported by Scratch is the round operator,
which rounds decimal numbers to the nearest whole number. For example,
round(3.1) = 3, round(3.5) = 4, and round(3.6) = 4.

Random Numbers
As you program more often, you’ll probably need to generate random num-
bers at some point, especially if you create games and simulations. Scratch
provides the pick random block specifically for this purpose.

22 Chapter 1

This block outputs a random number each time you use it. Its two edit-
able white boxes allow you to enter a range for that number, and Scratch
will only choose values between the two limits (inclusive). Table 1-1 shows
some examples of using this block.

Table 1-1: Examples of Using the Pick Random Block

Example Possible Outcome

{0, 1}

{0, 1, 2, 3, . . . , 10}

{–2, –1, 0, 1, 2}

{0, 10, 20, 30, . . . , 100}

{0, 0 .1, 0 .15, 0 .267, 0 .3894, . . . , 1 .0}

{0, 0 .01, 0 .12, 0 .34, 0 .58, . . . , 1 .0}

n o t e The outputs of pick random 0 to 1 and pick random 0 to 1.0 are different. The
first case will give you either a 1 or a 0, but the second gives a decimal value between
0 and 1. If any input to the pick random block contains a decimal point, the output
will also be a decimal value.

Mathematical Functions
Scratch also supports a large number of mathematical functions. The sqrt
of block groups together 14 math functions that can be selected from the
drop-down menu, including square root, trigonometric, logarithmic, and
exponential functions. Refer to MathematicalFunctions.pdf for an extensive
coverage of these functions.

Summary
This chapter provided a high-level overview of Scratch and its program-
ming environment. You learned about the various elements of the user
interface and even created a game! We also explored Scratch’s mathemati-
cal operators and functions.

At this point, you’ve seen the most basic information you need to cre-
ate some powerful scripts in Scratch, but that’s only one step on the road
to writing awesome programs. In the chapters that follow, you’ll dig deeper
into how you can use Scratch to develop your programming skills.

Getting Started 23

Problems

1. Write down the result of each block in the script below. Is there a pat-
tern in these products?

2. Is there a pattern in the products 9 × 9, 99 × 99, 999 × 999, ... , etc.?
Use the say command to find the result of these products and check
your answer.

3. Complete the following table by writing the value of each expression.

Expression Value

3 + (2 × 5)

(10 / 2) – 3

7 + (8 × 2) – 4

(2 + 3) × 4

5 + (2 × (7 – 4))

(11 – 5) × (2 + 1) / 2

5 × (5 + 4) – 2 × (1 + 3)

(6 + 12) mod 4

3 × (13 mod 3)

5 + (17 mod 5) – 3

Now, use the say command and the appropriate operator blocks to
check your answers.

4. Evaluate the following Scratch expressions using a pencil and paper.
Let x = 2 and y = 4.

a) d)

b) e)

c)

24 Chapter 1

5. Use the say command and the appropriate blocks from the Operators
palette to calculate the following:

a. The square root of 32

b. The sine of 30°

c. The cosine of 60°

d. The result of rounding 99.459

6. Create a function block that calculates the average of the following
three numbers: 90, 95, and 98. Display the result using the say block.

7. Create a function block that converts 60°F to Celsius. (Hint: C = (5/9) ×
(F – 32).)

8. Create a function block that calculates the area of a trapezoid with a
height of 4/6 foot and bases of lengths 5/9 foot and 22/9 foot. (Hint:
A = 0.5 × (b1 + b2) × h, where h is the height and b1 and b2 are the lengths
of the two bases.)

9. Create a function block that calculates the force needed to accelerate a
2,000 kg car 3 m/s2. (Hint: Force = mass × acceleration.)

10. The cost of electricity is $0.06 per kilowatt-hour. Create a function
block that calculates the cost of using a 1,500-watt air conditioner for
2 hours. (Hint: Energy = power × time.)

11. With a simple mathematical trick, you can use the round operator to
round a number to a specific decimal place. For example, you can round
the number 5.3567 to the nearest tenth (that is, the first position to the
right of the decimal point) using these three steps:

a. 5.3567 × 10 = 53.567 (Multiply the number by 10.)

b. round(53.567) = 54 (Round the answer from step a.)

c. 54/10 = 5.4 (Divide the answer from step b by 10.)

What changes would you need to make to the above steps to round
to the nearest hundredth (i.e., the second position to the right of the
decimal point)? Create a function block that rounds 5.3567 to the near-
est tenth (or hundredth) and display its output using the say block.

2
m o t i o n a n D D r a w i n g

Now that you know your way around the interface,
you’re ready to use more of Scratch’s programming
tools. In this chapter, you’ll do the following:

•	 Explore Scratch’s motion and pen commands

•	 Animate sprites and move them around the Stage

•	 Draw artistic, geometric patterns and create games

•	 Learn why sprite cloning is a valuable tool

It’s time to put on your creative hat and jump into the world of com-
puter graphics!

using motion commands
If you want to make games or other animated programs, you’ll need to use
blocks from the Motion palette to move sprites around. Furthermore, you’ll
need to command sprites to move to a particular spot on the Stage or turn
in a certain direction. You’ll find out how in this section.

26 Chapter 2

Absolute Motion
Remember, as you saw in Figure 1-4, the Stage is like a 480 × 360 rectangu-
lar grid whose center is point (0,0). Scratch has four absolute motion com-
mands (go to, glide to, set x to, and set y to) that let you tell your sprite
exactly where to go on that grid.

n o t e If you want more details about these and other blocks, use the Scratch Tips window on
the right side of the Scripts panel. If you don’t see the Tips window, just click the ques-
tion mark near the top-right corner of Scratch’s Project Editor.

To demonstrate these commands, let’s say that you want to make
the Rocket sprite in Figure 2-1 hit the star-shaped Target sprite at position
(200,150). The most obvious way to do this is to use the go to block, as
 illustrated in the right side of the figure. The x -coordinate tells the sprite
how far to move horizontally across the Stage, whereas the y -coordinate
tells it how far to move vertically.

50 100 150 200

50

100

150
Target

x

y

50 100 150 200

50

100

150

x

y

Figure 2-1: You can move a sprite to any point on the Stage using the
go to block .

The Rocket won’t turn to face the target, but it will move along an invis-
ible line connecting its current position, point (0,0), to point (200,150).
You can make the Rocket slow down by using the glide to command instead.
It’s nearly identical to the go to command, but it lets you set how long the
Rocket will take to reach the target.

Another way to hit the target is to change the x - and y -positions of the
Rocket sprite independently with the set x to and set y to blocks, as illus-
trated in Figure 2-2. Do you remember how you used the set x to block in
the Pong game in Chapter 1? (See Figure 1-20 on page 17 for a review.)

50 100 150

50

100

150

x

y

50 100 150

50

100

150

x

y

200

Figure 2-2: You can set the x- and y-coordinates of a sprite
independently .

Motion and Drawing 27

You can always see a sprite’s current x - and y -position in the upper-right
corner of the Scripts Area. If you want to display this information on the
Stage, you can use the x position and y position reporter blocks. Click the
checkboxes next to these blocks to see their values on the Stage.

n o t e Motion commands work with reference to a sprite’s center, which you can set in the Paint
Editor. For example, sending a sprite to point (100,100) moves the sprite so that its center
is at (100,100), as illustrated in Figure 2-3. Therefore, when you draw or import a cos-
tume for a sprite you plan to move around, pay special attention to its center!

Mouse2 sprite

100 200

100
Sprite’s
center

Mouse1 sprite

Figure 2-3: Motion commands reference a sprite’s center .

Relative Motion
Now consider the grid depicted in Figure 2-4, which shows another Rocket
sprite and target. You can’t see the coordinates this time, so you don’t know
the sprites’ exact position. If you had to tell the Rocket how to hit the target,
you might say: “Move three steps, then turn right, then move two steps.”

Move
Three Steps

Turn
Right

Move
Two Steps

Figure 2-4: You can move a sprite on the Stage using relative motion commands .

t ry i t ou t 2-1

List the coordinates of the Rocket sprite after executing each command in the
script shown below .

50

150

x

y

100

100

200

28 Chapter 2

Commands like move and turn are relative motion commands. The first
“move” command above, for example, caused the Rocket to move up, while
the second “move” command sent it right. The motion depends on (or is
relative to) the sprite’s current direction. The direction convention used in
Scratch is illustrated in Figure 2-5.

0 (360)

45 (–315)

90 (–270)

135 (–225)

180 (–180)

225 (–135)

315 (–45)

270 (–90)

Figure 2-5: In Scratch, 0 is up, 90 is right, 180 is down, and –90 is left .

You can turn a sprite toward a particular direction (or heading) with the
point in direction command. To choose up, right, down, or left, just click
the down arrow and select one of these options from the drop-down menu.
For other directions, type the value you want in the white edit box. You can
even use negative values! (For example, typing 45 or –315 will both point
the sprite northeast.)

n o t e You’ll find the sprite’s current direction in the sprite info area. You can also click the
checkbox next to the direction block (in the Motion palette) to see the direction on
the Stage.

Now that you know how directions work in Scratch, let’s see how the
rela tive motion commands (move, change x by, change y by, and turn)
work. We’ll start with the move and turn commands, which work with
respect to the sprite’s current direction, as shown in Figure 2-6.

10
0

45˚

45˚

Figure 2-6: A simple script that illustrates using the move and turn commands

First, the go to block u moves the Rocket so that its center is aligned
with the center of the Stage. The second command block v points the
sprite up, and the third w turns it 45° clockwise. Then, the sprite moves
100 steps x in its current direction before turning 45° counterclockwise y
to stop in the up position.

Motion and Drawing 29

Sometimes you might only want to move your sprite horizontally or
vertically from its current position, and that’s where the change x by and
change y by blocks come in. The script in Figure 2-7 illustrates the use of
these blocks.

50

100

150

50 100 150 200
x

y

Figure 2-7: Navigate a winding path with change x by
and change y by .

After the Rocket sprite moves to the center of the Stage, the first change
x by 50 command u adds 50 to its x -coordinate to send it 50 steps to the
right. The next command v, change y by 50, makes the y -coordinate 50,
causing the sprite to move up 50 steps. The other commands work in a simi-
lar way. Try to trace the sprite’s motion, illustrated in Figure 2-7, to find the
sprite’s final destination.

Dir ec t ion a nD coS t ume S

The point in direction command knows nothing about the sprite’s costume .
For example, consider the two sprites shown below .

Using the Paint Editor, we drew the bird’s costume to face right and the
insect’s costume to face up . What do think will happen if you use the point in
direction 90 command (that is, point right) on each sprite?

You might guess that the insect will turn to face right, but actually, neither
sprite will turn . Although 90° is labeled “right,” that direction really refers to the
costume’s original orientation in the Paint Editor . So because the insect looks like
it’s facing up in the Paint Editor, it will still face up when you tell it to point to
90° . If you want your sprite to respond to the point in direction command as
shown in Figure 2-5, you need to draw the sprite’s costume so that it faces right
in the Paint Editor (as the bird costume does in the above figure) .

30 Chapter 2

Other Motion Commands
There are just four motion commands left to explore: point towards; a sec-
ond type of go to block; if on edge, bounce; and set rotation style.

You’ve already learned about rotation styles, and you saw the if on edge,
bounce command in action in Chapter 1 (see Figure 1-13 on page 12). To
see the other two commands in action, let’s create a simple application of
a cat chasing a tennis ball, as illustrated in Figure 2-8.

.

Script for the Ball sprite

Script for the Cat sprite

Figure 2-8: Programming a cat to run after a tennis ball

As shown, the application contains two sprites, named Cat and Ball,
and two scripts. When you click the green flag icon, the Ball sprite follows
the mouse pointer. The Cat sprite continuously points towards the Ball and
moves toward it using the glide command. Go ahead and build this appli-
cation to see how it works. You can find the forever block in the Control
palette and the mouse x and mouse y blocks in the Sensing palette. You
can find the complete application in the file TennisBallChaser.sb2.

In the next section, we’ll look at the Pen palette and learn how to make
a sprite leave a visual trace of its motion.

TennisBallChaser
 .sb2

t ry i t ou t 2-2

Find the rocket’s final (x,y) position when it executes each of the two scripts shown
below . What mathematical theorem can you use to prove that the two scripts are
equivalent?

100

50 100
x

y

50

Motion and Drawing 31

Pen commands and easy draw
The motion commands you used in the previous section allow you to move
the sprite to any point on the Stage. Now wouldn’t it be nice to see the
actual path your sprite travels? Scratch’s pen can help.

Each sprite has an invisible pen, which can be either up or down. If the
pen is down, the sprite will draw as it moves. Otherwise, the sprite moves
without leaving any trace. The commands in the Pen palette allow you to
control the pen’s size, color, and shade.

Let’s explore some of the pen commands in detail and create a simple
program to draw pictures by moving and turning a sprite on the Stage
with the arrow keys. One press of the up arrow (↑) will move the sprite for-
ward 10 steps. Pressing the down arrow (↓) will move the sprite backward
10 steps. Each press of the right arrow (→) will turn the sprite to the right
10°, and each press of the left arrow (←) will turn the sprite to the left 10°.
So, for example, to make the sprite turn 90°, as shown in Figure 2-9, you
would press the left or right arrow key nine times.

First, start a new Scratch project. Replace the Cat’s costume with some-
thing that clearly shows if the sprite is pointing left, right, up, or down. The
beetle or the cat2 costumes (from the Animals folder) are good choices, but
feel free to pick any other costume you like. In the Costumes tab, click the
Choose costume from library button and select an appropriate costume.

EasyDraw .sb2

t ry i t ou t 2-3

Open the Tips window in Scratch, click the house icon, and click Pen for a brief
description of each Pen command . The scripts below demonstrate most of those
commands . Re-create these scripts, run them, and describe the output of each .
Don’t forget to set the sprite’s pen down before running these scripts . (You can
find the repeat block in the Control palette .)

32 Chapter 2

Turn the sprite to the left 10˚.

Move the sprite forward 10 steps

Move the sprite backward 10 steps.

Turn the sprite to the right 10˚.

Figure 2-9: The Easy Draw application in action

Now, add the scripts shown in Figure 2-10 to your sprite. You can create
the four when key pressed blocks from the when space key pressed block
in the Events palette. Just click the down arrow and choose the arrow key
you need.

You’ll create these four hat blocks from the when space
key pressed block (from the Events palette).

Figure 2-10: Scripts for the Easy Draw application

When you click the green flag, the sprite will move to the center of the
Stage u and point up v. Then the pen’s color w and size x will be set, and
the script puts the pen down y to get ready for drawing. After that, the pro-
gram clears any previous drawings from the Stage z.

All you have to do to clear the Stage and start a new drawing is click the
green flag. Use the keyboard arrows to draw any shape you like. What shape
do you think the sequence ↑→↑→ ↑→ … would create?

t ry i t ou t 2- 4

Add an option to make the drawing pen wider when the letter W is pressed and
narrower when the letter N is pressed . Think of other ways to enhance the applica-
tion and try to implement them .

Motion and Drawing 33

the Power of repeat
Our programs have been relatively simple so far, but as you start writing
longer scripts, you’ll often need to replicate the same stack of blocks several
times in a row. Duplicating scripts can make your program longer, harder
to understand, and tougher to experiment with. If you need to change one
number, for example, you’ll have to make the same change in each copy of
the block. The repeat command from the Control palette can help you avoid
this problem.

For example, let’s say that you want to draw the square shown in Fig-
ure 2-11 (left). You could command the sprite to follow these repetitive
instructions:

1. Move some distance and turn 90° counterclockwise.

2. Move the same distance and turn 90° counterclockwise.

3. Move the same distance and turn 90° counterclockwise.

4. Move the same distance and turn 90° counterclockwise.

Command 1

C
om

m
an

d
2

Command 3

C
om

m
an

d
4

ST
A

RT

Figure 2-11: A square (left) and a script to draw it (right) using a sequence of
move and turn commands

Figure 2-11 also shows a script that implements these instructions.
Notice that it repeats the commands move 100 steps and turn 90 degrees
four times. In contrast, we can
avoid using the same two blocks
over and over with the repeat
block, which runs the commands
inside it as many times as you tell it
to, as shown in Figure 2-12. Using
a repeat block can also make
the instructions much easier to
understand.

The square you draw with the script in Figure 2-11 depends on the
direction your sprite faces when you start. This concept is illustrated in
Figure 2-13. Note that after drawing the square, the sprite will return to its
starting point and face the same direction it did before it began to move.

DrawSquare .sb2

Figure 2-12: Using the repeat block to
draw a square

Run the commands
inside the repeat
block four times.

34 Chapter 2

Initial direction
Initial position

Figure 2-13: The sprite’s initial direction changes the square’s location .

Rotated Squares
You can create amazing art by repeating a pattern in a certain sequence.
For example, the script shown in Figure 2-14 creates an attractive pattern by
rotating and drawing a square 12 times. (The blocks for initializing the pen
and putting it down are not shown for the sake of brevity.)

Draw a
square.

Turn left 30°.

To draw
12 squares.

First square
Second square

Figure 2-14: Drawing a rotated square

The outer repeat block u executes 12 times. Each time inside the loop,
it draws one square v and then makes a 30° left turn w to prepare to draw
the next one.

RotatedSquares
 .sb2

t ry i t ou t 2-5

You can easily modify the square-drawing script of Figure 2-12 to draw other
regular polygons . The modified script has the form shown below . You can substi-
tute any whole number for “number of sides” to specify the desired polygon and
any value for “side length” to control the polygon’s size . The figure also shows
six polygons of the same side length that were drawn using this script . The sprite
started at the position and heading indicated by the green arrow in the figure .
Open the file Polygon.sb2 and run it using different values for “number of sides .”
What happens when this number becomes large? This should give you an idea
of how to draw circles .

number of sides

number of sides

side length

polygon number
of sides

Pentagon
Hexagon
Heptagon
Octagon
Nonagon

5
6
7
8
9

Polygon .sb2

Motion and Drawing 35

Exploring with Stamp
In the previous section, you learned to use the turn and repeat blocks to
transform simple shapes into complex patterns. But what if you want to rotate
more challenging shapes? Instead of drawing the basic shape with move and
turn commands, you can make a new costume in the Paint Editor and use the
stamp block to draw multiple copies of it on the Stage. To illustrate this tech-
nique, let’s write a program to draw the windmill shown in Figure 2-15.

The flag shape as it
appears in the Paint
Editor. Note the location
of the costume’s center.

Figure 2-15: The stamp command allows you to create complex geometric patterns
with ease .

We drew the flag shape using the Paint Editor (see Figure 2-15, left)
and used it as the costume of our sprite. We set the costume’s center at the
lower tip of the flag so we could rotate the flag around this point.

The script for drawing the windmill is shown in Figure 2-15 (middle).
The repeat block executes eight times; each time, it stamps a copy of the
costume on the Stage before rotating the sprite 45° to the left. Note that
for this script to work, you must use the set rotation style block with the
sprite’s rotation style set to all around to allow the flag to flip as it rotates.

n o t e DrawingGeometricShapes.pdf in the extra resources package (which you can down-
load from http://nostarch.com/learnscratch/) provides comprehensive coverage
of drawing geometric shapes such as rectangles, parallelograms, rhombuses, trape-
zoids, kites, and polygons, and teaches you how to create attractive polygon art.

Windmill .sb2

t ry i t ou t 2-6

Notice that (12 repeats) × (30° for each repeat) = 360° . What do you think would
happen if you changed the numbers in the program to 4 repeats and 90°? What
about 5 and 72°? Experiment with different values for the repeat count and the
turn angle to see what happens .

t ry i t ou t 2-7

The change color effect by block (from the Looks palette) allows you to apply
graphic effects like color, whirl, and fisheye . Open the file Windmill.sb2 and add
this command inside the repeat block . Experiment with other graphic effects to
make some more cool patterns . Note that for the change color effect by block
to work, the flag’s color in the Paint Editor can’t be black .

36 Chapter 2

Scratch Projects
In this section, we’ll develop two short programs that should further
your understanding of the Motion and Pen blocks you’ve learned so
far. You can find the backdrops and sprites in the project files for this
chapter, so we’ll focus on writing the scripts we need to make these
applications work. An explanation of an additional bonus game, called
Survival Jump, is available in the extra resources. You’ll find details in
BonusApplications.pdf (http://nostarch.com/learnscratch/).

Some of these scripts will use command blocks that you haven’t seen,
but don’t worry if you don’t completely understand some things. You’ll
learn all about them in the coming chapters.

Get the Money
Our first application is a simple game in which the player needs to move
the sprite by using the keyboard arrows to collect as many bags of gold
as possible. As illustrated in Figure 2-16, the bag of gold appears at a
random location on the grid. If the player doesn’t grab the bag in three
seconds, it moves somewhere else.

This sprite, named Gold, will
appear at random locations
on the grid.

The Stage’s backdrop

Move this sprite, named
Player, using the arrow keys
to catch the bag of gold. You
have only three seconds to
get to the bag.

Every time you catch a bag,
your score will increase by 1.

–210 30 60 90–30–90–150 210

–150

–90

–30

30

90

150

Figure 2-16: Help the cat grab as many bags of gold as possible!

Open the file Money_NoCode.sb2. The scripts are missing, but you’ll
create them now, and the file contains everything else you’ll need.

n o t e The coordinate axes shown in Figure 2-16 were added to help you understand the
numbers used in these scripts. Come back to this figure as needed to refresh your
mental picture of how the sprites are moving.

Let’s start by writing the scripts for the Player sprite, as shown in
Figure 2-17.

Money_
NoCode .sb2

Motion and Drawing 37

Note:

Drag the when space
key pressed block from
the Events palette and
then select the desired
key from the drop-down
menu.

Figure 2-17: The scripts for the Player sprite

When the player clicks the green flag, this sprite moves to (–30,–30) u
and points to the right v. The other four scripts respond to the arrow keys.
When an arrow key is pressed, the corresponding script changes the sprite’s
direction w, plays a short sound (using the play sound block x from the
Sound palette), and moves the sprite 60 steps y. The sprite bounces off the
Stage’s edge z if needed. Because 60 steps correspond to 1 square on the
grid of Figure 2-16, each time you press an arrow key, the Player sprite moves
1 square.

n o t e Have you noticed that the four arrow-handling scripts in Figure 2-17 are almost iden-
tical? In Chapter 4, you’ll learn how to avoid duplicating code this way.

Go ahead and test this part of the game. You should be able to move the
Player sprite around the Stage using the arrow keys on your keyboard. Once
you have that working, we’ll move on to the Gold sprite, whose script is shown
in Figure 2-18.

Figure 2-18: The script for the Gold sprite

38 Chapter 2

Like the Player script, this script also starts when the green flag is
clicked. It moves the bag of gold around. It also tracks how many bags
have been collected with a variable named score, which I’ve created for
you in the Data palette.

n o t e Labels like score are called variables. They let us save information to use later in
our programs. You’ll learn everything about variables in Chapter 5.

Since the game just started and we don’t have any bags yet, we set score
to 0 u. Next, we start a loop that will repeat 20 times v to show a total of
20 bags to the player. (If you don’t want 20 bags, feel free to use your favor-
ite number instead.) Each time the loop runs, the bag of gold will appear at
some random location w, give the player some time to grab it x, and incre-
ment score if the player is successful y.

We need the bag to appear randomly on one of the Stage’s 48 squares.
As you saw in Figure 2-16, the bag’s x -position can be any of the following
values: –210, –150, –90, ... , 210. These numbers are spaced 60 steps apart,
so you can find each x -position starting with –210 by calculating

x = –210 + (0 × 60)
x = –210 + (1 × 60)
x = –210 + (2 × 60)
x = –210 + (3 × 60)

and so on. A similar expression applies to the y -position.
We can set the bag’s x-position by generating a random number between

0 and 7, multiplying it by 60, and adding the result to −210. Figure 2-19 shows
the detailed steps for creating the set x to block in our script; the set y to
block is constructed in a similar manner.

Drag the set x to block from the Motion

Drag the add block (from the Operators
palette) and type –210 in the first slot.

Drag the multiply block (from the
Operators palette) and drop it over

Drag the pick random block (from the
Operators palette) and drop it over the
first slot in the multiply block. Change

Type the number 60 in the second slot

palette.

the second slot.

the limits as shown.

of the multiply block.

Figure 2-19: Building the set x to block from Figure 2-18

After appearing at a random location, the bag of gold will give the
player three seconds to grab it. (You can change this duration to make
the game harder or easier to play.) To track the time, the script first resets
Scratch’s built-in timer to 0. It then waits until either the player grabs
the bag by touching it or the timer exceeds three seconds. When either

Motion and Drawing 39

condition happens, the wait until block will let the script move on to
execute the if/then block. The details for creating the wait until block
are illustrated in Figure 2-20.

Drag the wait until block from the

Drag the or block (from the Operators
palette) and drop it over the hexagonal

Drag the touching block (from the
Sensing palette) and drop it over the
first slot in the or block. Click the down

Drag the greater than (>) block (from the
Operators palette) and drop it over the

Drag the timer block (from the Sensing
palette) over the first slot in the > block.
Type the number 3 in the second slot as

Control palette.

arrow and select Player from the drop-

second slot in the or block.

shown.

slot.

down menu.

Figure 2-20: Building the wait until block in the script of Figure 2-18

n o t e Blocks inside the if/then block will only run if the condition you specify in the header
of the if/then block is true. Chapter 6 explains this block in detail, but for now, you
know enough to use it to add your own touches to a program.

If the player touches the bag, the commands inside the if/then block
will run. In that case, the play sound block will make a WaterDrop noise, and
the change score by 1 block (in the Data palette) will add 1 to the score.

The game is now complete. Click the green flag to test your creation!

Catching Apples
Consider the Catching Apples game shown in Figure 2-21. In this game,
apples appear at random horizontal positions at the top of the Stage at ran-
dom times and fall to the ground. The player has to move the cart to catch
the apples before they touch the ground, and each apple is worth 1 point.

CatchApples_
NoCode .sb2

Scr atch’S t ime r

Scratch maintains a timer that records how much time has passed since Scratch
was started . When you start Scratch in a Web browser, the timer will be set
to 0, and it will count up by tenths of a second as long as you keep Scratch
open . The timer block (in the Sensing palette) holds the current value of the
timer . The checkbox next to the block allows you to show/hide the block’s
monitor on the Stage . The reset timer block resets the timer to 0, and the
time starts ticking up again immediately . The timer continues to run even when
the project stops running .

40 Chapter 2

The apples are falling from
the trees.

Using the arrow keys, move
the Cart sprite to collect the
apples before they reach the
ground.

Figure 2-21: The Catching Apples game

At first, you might think such a game requires many sprites with nearly
identical scripts. After all, there are a lot of apples. As of Scratch 2, however,
that’s not the case. With the cloning feature, you can easily create a bunch
of copies of a sprite. In our Catching Apples game, we’ll use a single apple
sprite and create as many clones as we desire.

Open the file CatchApples_NoCode.sb2, which contains the setup for our
game without scripts. To make things a little more exciting, the setup also
includes a variable named score (created for you in the Data palette), which
we’ll use to keep track of the caught apples. First, however, you’ll make the
script for the Cart sprite as illustrated in Figure 2-22.

Move to the bottom center of
the Stage.

If the right arrow is pressed,
move the cart 30 steps to the
right.

If the left arrow is pressed, move
the cart 30 steps to the left.

Costume
center

Figure 2-22: The script for the Cart sprite

When the green flag is clicked, we move the cart to the bottom center
of the Stage. The script then continuously checks the state of the right and
left arrows and moves the cart accordingly. I picked the number 30 based on
trial and error, so feel free to change it based on your own experimentation.

Now comes the cloning business. Start by adding the script of Fig-
ure 2-23 to the Apple sprite. This script also starts running when the green
flag is clicked.

Motion and Drawing 41

Figure 2-23: The first script of the Apple sprite

Since we haven’t caught any apples yet, the script sets the score variable
to 0 u. Next, it makes the sprite visible with the show block from the Looks
palette v. It then starts a repeat block that will loop for 30 times w to have
30 apples fall.

During each pass of the loop, the Apple sprite will move to a random
horizontal position at the top part of the Stage x. It then calls the create
clone of block (from the Control palette) to clone itself y, waits for a short
random time z, and starts the next round of the repeat block. After com-
pleting the 30 rounds of the repeat block, the script hides the Apple sprite
using the hide block { from the Looks palette.

If you run the game now by clicking the green flag, 30 apples will pop
up randomly at the top of the Stage and stay there—because we haven’t
told the cloned apples what to do. This is where the next script for the Apple
sprite (Figure 2-24) comes in.

Every clone executes this script.

Move down 10 steps.
If you touch the Cart sprite, add 1 to score,
play a sound, and then delete the clone.

If you go below the top of the Cart, then the
player failed to catch this apple. Just play a
sound and delete the clone.

Figure 2-24: The second script for the Apple sprite

Thanks to the when I start as a clone block u (from the Control pal-
ette), each clone will execute the script shown in this figure. Each Apple
moves down 10 steps v and checks whether it was caught or missed by the

42 Chapter 2

cart. If the clone detects that it is touching the cart w, that means it was
caught. Therefore, it increases the score, plays a sound, and deletes itself
(because it has no more work to do). If the clone falls below the cart x,
then the player missed; in this case, the clone plays a different sound
before deleting itself. If the clone is neither caught nor missed, then it’s
still falling, and the forever block goes around again.

Now that our apples know how to fall, the game is complete! Go ahead
and test it out by clicking the green flag. If you want to experiment, try
changing the wait time between cloning the different apples and the speed
of moving the cart. Does that give you some ideas for changing the game’s
difficulty?

more on cloned Sprites
Any sprite can copy itself or another sprite using the create clone of block.
(The Stage can also clone sprites using the same block.) A cloned sprite
inherits the original’s state at the time it is cloned—that is, the original’s
current position and direction, costume, visibility status, pen color, pen
size, graphic effects, and so on. This idea is illustrated in Figure 2-25.

At this point, the master sprite is
at (−100,0), pointing right, and its
size is set to 60%.

The position, direction,
and size of the clone will
be identical to those of the
master.
The master sprite changes its
position and direction, and
returns to its original size.

Clone

Master

Figure 2-25: A clone inherits the attributes of its master .

Clones also inherit the scripts of the master sprite, as shown in Fig-
ure 2-26. Here, the master sprite creates two clones. When you press the
spacebar, all three sprites (the master and the two clones) turn 15° to the
right because they all execute the when space key pressed script.

Clone1 Clone2 Master

Figure 2-26: Clones inherit the scripts of their master .

Motion and Drawing 43

Always pay special attention when using the create clone of block
in a script that doesn’t start with the green flag trigger, or you could end
up with more sprites than you intended. Consider the program shown in
Figure 2-27. The first time you press the spacebar, a clone will be created,
and the application will have two sprites (the master and the clone).

Figure 2-27: Cloning in response to a key press event

Now, if you press the spacebar a second time, you’ll have four sprites
in your application. Why? The master sprite will respond to the key press
and create a clone, but the first clone will also respond and create another
clone (that is, a clone of the clone). Press the spacebar a third time, and
you’ll have eight sprites in your application. The number of clones will grow
exponentially!

You can solve this by only cloning sprites in scripts that start with the
when green flag clicked block. These scripts are run only by the master
sprite.

Summary
In this chapter, you learned how to move sprites to specific points on the
Stage using absolute motion commands. You then used relative motion
commands to move sprites with reference to their own position and direc-
tion. After that, you created some nifty drawings with the pen commands.

As you drew different shapes, you discovered the power of the repeat
block, which allows you to create shorter and more efficient scripts. You also
learned about the stamp command and used it with the repeat block to
design complex patterns with ease.

At the end of the chapter, you created two games and learned about
Scratch’s clone feature. In the next chapter, you’ll use the Looks and Sound
palettes to create even more engaging programs.

44 Chapter 2

Problems

1. Explain how the following script works. Write the (x,y) coordinates for
all corners of the figure.

2. Write a script to connect each of the following sets of points in order
and reveal the final shape:

a. (30,20), (80,20), (80,30), (90,30), (90,80), (80,80), (80,90),
(30,90), (30,80), (20,80), (20,30), (30,30), (30,20)

b. (–10,10), (–30,10), (–30,70), (–70,70), (–70,30), (–60,30), (–60,60),
(–40,60), (–40,10), (–90,10), (–90,90), (–10,90), (–10,10)

3. Write a script to draw each of the patterns shown below.

4. Consider the following script and its output. Re-create the script, add
the necessary pen setup commands, run it, and explain how it works.

Motion and Drawing 45

5. Consider the following script and its output. Re-create the script, add
the necessary pen setup commands, run it, and explain how it works.

6. Consider the following script and its output. Re-create the script, add
the necessary pen commands, run it, and explain how it works.

7. Create the script shown below, add the necessary pen commands, and
run it. Explain how the script works.

8. Write a program that produces the output shown below.

46 Chapter 2

9. In this problem, you’ll write the scripts needed to complete the Balloon
Blast game shown below.

These five balloons are clones of
the Balloon sprite.

The Rocket sprite moves left and
right on its own. Hit the spacebar
key to launch the rocket.

This game contains two sprites, named Balloon and Rocket. When
you click the green flag, the Balloon sprite creates the five clones in the
interface shown above. The Rocket sprite moves left and right on its
own, bouncing off the edges of the Stage. You need to press the space-
bar at the right moment to launch the rocket and pop the balloons.

Open the file BalloonBlast_NoCode.sb2. This file contains the code
for creating the five clones when the game starts. Your task is to com-
plete the game by adding the following two scripts.

Add this script to
the Balloon sprite.

Add this script to
the Rocket sprite.

BalloonBlast_
NoCode .sb2

3
L o o k S a n D S o u n D

In the last chapter, you learned to move sprites on the
Stage using the motion commands and how to use
the pen to draw patterns. In this chapter, you’ll learn
about the various commands in the Looks and Sounds
palettes. Along the way, you’ll do the following:

•	 Create animations and image effects

•	 Learn how layers work in Scratch

•	 Play sound files and compose music

•	 Make complete animated scenes of your own

The commands in the Looks palette will let you create animations and
apply graphic effects like whirl, fisheye, ghost, and so on to costumes and
backgrounds. The commands in the Sounds palette are handy when you
want to add sounds, voices, or music to your applications. Let’s jump right
in with some animation!

48 Chapter 3

the Looks Palette
You can draw images directly on the Stage using the pen commands, but
costumes provide another powerful, and sometimes much easier, way to
add graphics to your programs. The commands in the Looks palette will let
you manipulate costumes to create animations, add thought bubbles, apply
graphic effects, and change a sprite’s visibility. We’ll explore those com-
mand blocks in this section.

Changing Costumes to Animate
You know how to send a sprite from one point to another on the Stage, but
static sprites don’t look very lifelike as they jump around. If you use differ-
ent costumes and switch between them fast enough, you can make a sprite
appear as if it were really moving! Open the file Animation.sb2 to try out the
animation in Figure 3-1.

This application contains one sprite
with these seven costumes.

Figure 3-1: You can create the illusion of animation by
switching among different costumes .

This application contains one sprite with seven costumes along with
one script. You can see the seven costumes in the Costumes tab and the script
in the Scripts tab of the sprite. When you run the application by clicking the
green flag, the stick figure will appear to walk on the Stage. The key to its
motion is the next costume command, which tells the sprite to put on the
next costume in its list. If the sprite is wearing the last costume in the list,
it will roll over to its first costume.

When the green flag is clicked, the script starts a forever loop with a
wait block at the end to create a delay of 0.1 seconds after each costume
change. If you remove this delay from the script, the stick figure will appear
to run instead of walk. Experiment with different values for the move and
the wait blocks and see how they affect the animation.

Although you could draw this walking stick figure with the pen
commands, you would need to write a long script. On the other hand,
once you draw these costumes, programming the animation is a breeze.
Remember that you can create images using your favorite paint program
or with Scratch’s Paint Editor.

Animation .sb2

Looks and Sound 49

If you want people to interact with a sprite, you could change its cos-
tume in response to a mouse click, as in the Click on Face application.
This application contains a single sprite, named Face, which has the five cos-
tumes shown in Figure 3-2. It uses the when this sprite clicked block (from
the Events palette) to tell the sprite when to switch costumes.

The five costumes of the Face sprite

Tell the Stage to change its backdrop.

When the Stage switches to Stage4, glide to
the upper-right corner and back to the center.

The four backdrops of the Stage

Figure 3-2: The smiley face and the backdrop change whenever the sprite is clicked .

When you run this application, every time you click the mouse on the
face image, the image will change to the next one in the list. The script
also uses the switch backdrop to block to command the Stage to switch
randomly to one of its four backdrops. When the Stage switches to its
Stage4 image, the Face sprite detects this event (using the when backdrop
switches to trigger block from the Events palette). In this case, the face
makes a trip to the upper-right corner of the Stage and then returns to
the center.

ClickOnFace .sb2

t ry i t ou t 3-1

The file TrafficLight.sb2 contains one sprite that has three costumes (named red,
orange, and green) and an incomplete script, as shown below . Complete the
application by adding the necessary wait blocks to create a realistic traffic light
animation .

red orange green

TrafficLight .sb2

50 Chapter 3

n o t e You can use the switch backdrop to command to change scenes in a story, switch
levels in a game, and so on. Any sprite in your project can use the when backdrop
switches to block to detect when the Stage has switched to a certain costume and act
accordingly. See the Tips window in the Scratch interface for more details.

Sprites That Speak and Think
You can use the say and think commands to make your sprite speak or
think like a character in a comic strip, as illustrated in Figure 3-3 (left).

2 seconds later

Figure 3-3: Use the say or think commands to show a message
in a speech or a thought bubble .

Any phrase you type into these commands will appear above the sprite,
and the message is displayed permanently. If you want to clear the message,
use a say or think block with no text. You could also display a message for a
fixed time instead with the say for secs (or the think for secs) command,
as illustrated in Figure 3-3 (right).

Image Effects
The set effect to command allows you to apply different graphic effects
to costumes and backdrops. Scratch gives these effects names like fisheye,
whirl, mosaic, and so on. Figure 3-4 shows exactly what they do.

GraphicEffects
 .sb2

t ry i t ou t 3-2

To see the Say and Think commands in action, open the file Argue.sb2 and run
it . This application simulates an endless argument between two characters, as
illustrated below . Study the scripts to understand how they use accurate timing to
synchronize the actions of the two characters .

I am the cute
one.

No, I am the
cute one.

No, I am the
cute one.

2 seconds later 2 seconds later

Argue .sb2

Looks and Sound 51

clear
color effect
fisheye effect
whirl effect
pixelate effect
mosaic effect
ghost effect
brightness effect

Figure 3-4: This figure shows what happens to the cat when you apply Scratch’s graphic
effects .

Click the down arrow in the set effect to block to choose the effect
you want from the drop-down menu. You can also use the change effect
by command to adjust an effect instead of setting it directly. For example,
if the current ghost effect is set to 40, changing it by 60 would set the ghost
effect to 100, causing the sprite to disappear (like a ghost). When you want
to return an image to its original state, use the clear graphic effects block.

n o t e You can apply multiple effects to a sprite at once by using several graphic effect com-
mands in sequence.

Size and Visibility
Sometimes you may need to change the size of a sprite or control when it
appears in your program. For example, you may want to have closer objects
in a scene look larger, or you may want to show an “instructions” sprite only
at the beginning of a game.

If you need to shrink or grow a sprite, the set size to % and change
size by commands can help. The first sets a sprite’s size to a percentage
of its original size, and the second modifies a sprite’s size by a specified
amount relative to its current size. When you need to make a sprite appear
or disappear, use the show block or the hide block, respectively.

To see these commands in action, open SneezingCat.sb2. In this applica-
tion, we’ll have the cat sneeze like a cartoon character by changing its size,
as shown in Figure 3-5.

SneezingCat .sb2

52 Chapter 3

Say “aaaaa” for a short time and
increase the sprite’s size by 10. At
the end of the loop, the sprite’s
size will have increased by 50%.

Reduce the sprite’s size
gradually to its original size.

Clear the speech bubble, so the
sprite isn’t saying anything.

Figure 3-5: This script makes the Cat sprite sneeze .

The size of the sprite increases as it gets ready to sneeze, and after it
sneezes, it returns slowly to its original size. Run the program and watch
what happens to get a feel for these commands.

Layers
The last two commands in the Looks palette affect the order in which sprites
are drawn on the Stage. This order determines which sprites are visible when
they overlap. For example, let’s say that you want to create a scene of a girl
standing behind a big rock. There are two layering possibilities, shown in
Figure 3-6 (left).

The Rock sprite
is in the front.

The Girl sprite
is in the front.

Front

Layer 3

Layer 2

Layer 1

...

Figure 3-6: The sprite in the front layer is completely visible and can cover
parts of overlapping sprites .

t ry i t ou t 3-3

Add a block to the end of the script in Figure 3-5 to have the Cat sprite finish its
dramatic sneeze by vanishing afterward . Add another block to show the sprite at
the beginning of the script .

Looks and Sound 53

If you want the girl to be behind the rock, you must bring the rock to
the front drawing layer or send the girl to the back drawing layer. Scratch
provides two commands that allow you to reorder the drawing layers, go to
front and go back layers (also shown in the figure). The first tells Scratch
to always draw a sprite on top, while the second sends a sprite back as many
layers as you specify.

We’ve covered animation with the Looks palette, but there’s another
thing that can liven up our applications. In the next section, we’ll explore
the Sound palette and its rich set of commands.

the Sound Palette
Games and other applications use sound effects and background music to
add excitement. In this section, you’ll learn to use Scratch’s sound-related
blocks, starting with how to incorporate audio files and control their play-
back. You’ll then look at command blocks for playing drums and other
musical instruments. After that, you’ll find out how to control the volume
and change the speed (or tempo) at which musical notes and drums are
played.

Playing Audio Files
You can save audio files on your computer in many formats, but Scratch
only recognizes two: WAV and MP3. There are three command blocks that
allow you to use these sound files in your applications: play sound, play
sound until done, and stop all sounds. Both of the first two blocks play
a given sound. The play sound command lets the next command start
before the sound finishes playing, while play sound until done won’t move
on to the next command until the end of the sound. The stop all sounds
command immediately turns off any sound that is playing.

You can add background music to your application by playing an
audio file repeatedly. The easiest way to do this is to use play sound until
done to let the file to play completely, and then restart it, as shown in
Figure 3-7 (left).

t ry i t ou t 3- 4

The Layers.sb2 application has four objects that move on the Stage . You can bring
an object to the top by pressing the first letter of its color . Run the application to
explore the effect of the go to front command .

Layers .sb2

54 Chapter 3

Figure 3-7: Two ways to create background music: Repeat
the sound after it finishes (left) or start the sound over after
playing it for a certain amount of time (right) .

Depending on the audio file, this approach may produce a very short, but
sometimes noticeable, pause between the consecutive restarts. You could also
use the play sound command with a wait command to give yourself more
control over the play duration, as shown in Figure 3-7 (right). By experiment-
ing with the wait time, you may be able to shorten the pause to produce a
smoother transition between the end of the current playback and the begin-
ning of the next.

Playing Drums and Other Sounds
If you’re developing games, you’ll probably want to play a short sound effect
when the player hits a target, finishes a level, and so on. It’s easy to create
these sounds with the play drum for beats command, which plays your
choice of 18 drum sounds for a certain number of beats. You can also add
pauses with the rest for beats command. The BeatsDemo.sb2 application,
shown in Figure 3-8, demonstrates the effect of the beats parameter.

0 0.4 0.8 1.2 1.60.2 0.6 1.0 1.4

Play 2 drum sounds with
0.8 units of delay in between.

Play 4 drum sounds with
0.4 units of delay in between.

Play 8 drum sounds with
0.2 units of delay in between.

0 0.8 1.6

0 0.4 0.8 1.2 1.6

Figure 3-8: An illustration of beats in Scratch

The script contains three repeat blocks with repeat counts of two, four,
and eight, respectively. Each repeat block plays the same drum sound using
a different number of beats. If you think of the time axis as being divided
into intervals of 0.2 units, the first loop will play two drum sounds that are
0.8 units of time apart. The second loop will play four drum sounds that
are 0.4 units apart, and the third loop plays eight drum sounds that are
0.2 units apart. Each loop takes the same amount of time to complete; we’re
just hitting the drum a different number of times in the same time interval.

BeatsDemo .sb2

Looks and Sound 55

I said “units of time” instead of seconds because the actual time to fin-
ish each loop depends on the tempo, which you can set with the set tempo
to command. Using the default tempo of 60 beats per minute (bpm), each
loop in the above example will take 1.6 seconds to complete. If you set the
tempo to 120 bpm, each loop will take 0.8 seconds to complete, while at
30 bpm, each takes 3.2 seconds, and so on.

Composing Music
Scratch also contains two commands that allow you to play musical notes
and compose your own music. The play note for beats command plays the
note you choose, from 0 to 127, for a number of beats you specify. The set
instrument to block tells Scratch which instrument the note should sound
like. Let’s use these commands to create a complete song. The script shown
in Figure 3-9 plays the French children’s song “Frère Jacques.”

Frère Jacques

Dormez-vous

Sonnez les matines

Ding, daing, dong

Figure 3-9: A script that plays “Frère Jacques”

Open this application, named FrereJacques.sb2, and experiment with dif-
ferent values for the set instrument to command to change the instrument
that plays this song.

Controlling Sound Volume
Let’s say that you want to make a sound fade in response to some event in
your application. If you are launching a rocket into space, for example, you
might want the rocket to sound loud when it takes off and become quieter
as it moves farther away.

Scratch contains a set of commands to control the volume, or loud-
ness, of audio files, drum sounds, and musical notes. The set volume to %
command sets a sprite’s loudness to a percentage of the speaker’s volume.
However, it affects only the sprite that uses it (or the Stage), so if you want
sounds to play at the same time with different volumes, you’ll have to use

FrereJacques .sb2

56 Chapter 3

multiple sprites. The change volume by block reduces or increases the vol-
ume by the number you enter. Negative numbers make sounds softer, while
positive numbers make them louder. You can even show a sprite’s volume
on the Stage by checking the box next to the volume block. These blocks
are handy if you want to change the volume based on how close a sprite is
to a target (as in a treasure-hunt game) or make parts of a song louder than
others. You can also use these blocks to simulate an orchestra by playing
different instruments (with different loudness levels) simultaneously.

Setting the Tempo
The last three blocks in the Sound palette are related to the tempo, or
speed, at which drums and notes are played. Tempo is measured in beats
per minute (bpm). The higher the tempo, the faster the notes and drums
will play.

Scratch lets you choose a specific tempo with the set tempo to bpm
command. You can also tell a sprite to speed up or slow down the tempo by
a certain amount with the change tempo by command. If you want to see a
sprite’s tempo on the Stage, check the box next to the tempo block.

Scratch Projects
The commands in the Looks and Sound palettes will help you add lots of
nifty effects to your applications. In this section, we’ll put everything we’ve
learned so far in this chapter together to create animated scenes of a per-
son dancing and some fireworks. This should help you review some of the
new command blocks and give you more practice with creating a complete
Scratch project.

t ry i t ou t 3-5

The file VolumeDemo.sb2 simulates a cat walking into a forest . The application
uses the change volume by command to make the cat's sound fade away as
it goes deeper into the woods . Come up with some ideas to make this simulation
more real and try to implement them .

VolumeDemo .sb2

t ry i t ou t 3-6

Open the file TempoDemo.sb2 and run it to see the set tempo to bpm and
change tempo by commands in action .

TempoDemo .sb2

Looks and Sound 57

Dancing on Stage
In this section, you’ll animate a Dancer sprite on the Stage. This appli-
cation is illustrated in Figure 3-10, and the complete script is saved as
DanceOnStage.sb2. We’ll build the whole scene right here—follow along
to see how it works!

The Ball sprite changes its color like a
disco ball.

The Board sprite also changes color to
simulate the spotlights.

The Dancer sprite will dance on the Stage
to music.

The SpotLight sprite will follow the
dancer as he moves around.

Stage background

Figure 3-10: The Dance Party application in action .

First, start a new project. If Scratch is not already running, all you
have to do is start it—this will automatically create a new project for you.
Otherwise, select New from the File menu. In both cases, you’ll have a new
project that contains the default Cat sprite.

The backdrop that you’ll use in this application is the party room
from the Indoors category. Import this backdrop and delete the default
white backdrop, which you won’t need. The Stage should now look like
Figure 3-11.

Later, we’ll grab this part of
the Stage and create the
Ball sprite from it.

We’ll also grab this part of
the Stage and create the
Board sprite from it.

Figure 3-11: We’ll turn some sections of the party-room backdrop into sprites later .

Examine Figures 3-10 and 3-11 carefully and notice how the Ball and
Board sprites look like parts of the backdrop. As you’ll see in a moment,
these two sprites were actually created from that image and placed on the
Stage to cover the sections they came from. Creating the two sprites this
way lets us change their color and make the Stage more realistic.

DanceOnStage
 .sb2

58 Chapter 3

Now we need some background music. Let’s use the medieval1 file
from the Music Loops category. Import this file to the Stage and then
delete the default “pop” sound. Next, add the script in Figure 3-12 to the
Stage. It uses the play sound command along with a wait time that lets the
audio file restart smoothly. The wait time of 9.5 seconds was selected by
experimentation.

Duration of the audio
clip (9.6 seconds)

Figure 3-12: The Stage plays our background music .

Click the green flag to test what you’ve created so far. You should hear
an audio clip repeating continuously. Stop the script when you’re ready, and
we’ll add our dancer.

Replace the costumes of the Cat sprite
with those of the Dancer. Import the dan-a
and dan-b costumes from the People cate-
gory, delete the two Cat costumes, and
change the Cat sprite’s name to Dancer.
The script for the Dancer is shown in
Figure 3-13.

The Dancer moves 20 steps to the right,
changes its costume, moves 20 steps to the
left, and changes its costume again. These
steps are repeated forever to make him
look like he’s really dancing. The script
also changes the fisheye effect slightly
with every step for some variety. Click the
green flag to test this new addition to
the program. You should hear the back-
ground music and see the Dancer moving
left and right on the Stage.

Now that you have a dancer for your
party, let’s add some colorful lights with the
Ball, Board, and SpotLight sprites. To create
the Ball sprite, click the thumbnail of the Stage to select it and then select the
Backdrops tab. Right-click the thumbnail of the party room backdrop and
select save to local file from the pop-up menu. This brings up a dialog that
allows you to save the backdrop image locally. Remember where you saved
this image because you’ll import it back in a moment.

Figure 3-13: This script tells the
Dancer sprite how to boogie .

Looks and Sound 59

Click the Upload sprite from file button (above the Sprite List) and
select the image you just saved. This creates a new sprite whose costume is
the same as the backdrop image. Name this sprite Ball and edit its costume
in the Paint Editor to remove everything but the colorful ball depicted in
Figure 3-14 (left). Be sure to paint the space around the ball with transpar-
ent color. Next, place the Ball sprite on the Stage exactly over the spot in the
backdrop where you took it from so that it looks like part of the image (see
Figure 3-11).

Figure 3-14: The costume for the Ball sprite as it
appears in the Paint Editor and its script

Figure 3-14 also shows the script you should add to the Ball sprite. It
changes the sprite’s color effect continuously to give the illusion that the
small circles are actually changing color.

Create the Board sprite the same way you created the Ball sprite.
Figure 3-15 shows how this sprite should appear in the Paint Editor (left)
and the script you’ll need to animate it (right). I’ve added some colors to
the costume (compare to Figure 3-11) to make the change color effect
command effective.

Figure 3-15: The Board sprite and its script

Because the Board sprite overlaps with the Dancer, the script sends the
Board two layers to the back so the Dancer will always be in the front. You
can do the same thing by selecting the Dancer sprite and clicking the go to
front block from the Looks palette.

The last sprite in this application is the SpotLight sprite. Figure 3-16
shows how this sprite appears in the Paint Editor, as well as the script you
need to create. The center of the image is at the tip of the cone shape,
which represents a light beam.

60 Chapter 3

Figure 3-16: The SpotLight sprite and its script

The script first sets the sprite’s ghost effect to 30 to make it transparent
so that it won’t obscure the backdrop. The script then sends this sprite one
layer back, which places the light beam behind the dancer. The sprite is then
positioned so that the light beam appears to be emanating from the spotlight
(see Figure 3-10). You’ll have to choose the x- and y-coordinates based on
your drawing. After that, the script commands the light beam to follow the
dancer (using the point towards command) and change its color forever.

Once you’re done adding the spotlight, the application should be com-
plete. Click the green flag to watch your dance party in action! In addi-
tion to the music and the dancing, you should also see the Ball, Board, and
SpotLight sprites changing color as though real disco lights are in action.

In the next section, we’ll look at a different application that highlights
many of the graphic effects we studied in this chapter.

Fireworks
Another application that lends itself naturally to the graphics blocks and
other concepts discussed in this chapter is an animated fireworks scene.
In this section, you’ll make a simple firework animation that floods the sky
with colorful sparks. The firework rockets will explode at random times,
producing sparks that fall as though acted upon by gravity and fade slowly
with time, as illustrated in Figure 3-17.

Clones of the Rocket sprite
will explode and produce
colorful sparks that fall to the
ground.

The City sprite

Figure 3-17: The fireworks animation in action

Fireworks_
NoCode .sb2

Looks and Sound 61

Start by opening the file Fireworks_NoCode.sb2, which contains the initial
setup of the application without any scripts. As shown in Figure 3-17, the
application contains two sprites: the City sprite and the Rocket sprite. The
City sprite shows an image of tall buildings that you can animate in any way
you like. The Rocket sprite will continuously create clones that explode in
the dark sky, producing the fireworks.

The Rocket sprite has the eight costumes shown in Figure 3-18. The first
costume, C1, is just a small dot that we’ll launch into the sky. When this dot
reaches its destination, which is selected at random, it will switch to one of
the other costumes (also at random) to simulate the initial explosion. We’ll
then use an appropriate graphic effect to make this explosion look more
realistic.

Figure 3-18: The eight costumes of the Rocket sprite .

With this plan in mind, add the script shown in Figure 3-19 to the Rocket
sprite. The script runs when the user clicks the green flag. After hiding the
Rocket sprite, it starts a forever loop to create clones of itself at random times.
Since the clones inherit the visibility state of the Rocket sprite, all created
clones will be hidden at first.

Figure 3-19: The first script of the Rocket
sprite

We now need to tell the cloned rockets what to do. This script is shown
in Figure 3-20.

62 Chapter 3

Figure 3-20: The start-up script of the cloned sprites

The cloned rocket starts by putting on its first costume u (the small
red dot). It then moves to a random horizontal position at the bottom of
the Stage v, shows itself w, and glides to a random position x in the upper
part of the Stage (somewhere above the buildings). This part of the script
simulates the launch of the rocket, and if you run it, you will see a red dot
moving from the ground to the sky. When the dot reaches its final point
in the sky, it explodes due to instructions in the second part of the script.
First, the clone plays a short drum sound y (to simulate the sound of an
explosion). Fireworks explosions start small and expand, so the clone sets
its initial size to 20%and picks one of its other costumes randomly z. It
then starts a repeat loop { to grow the firework. Every pass through the
loop, the clone increases its size by 4. At the end of the loop, the clone
deletes itself |.

That wraps up this fireworks festival! You should now be able to run the
animation and show off the scene you created. With just a couple of scripts,
we made a relatively complex animation.

Summary
In this chapter, we introduced many new programming blocks that can be
used to add some pizzazz to our applications. With these blocks, we can add
color, animation, graphic effects, music, and more.

We explained the blocks in the Looks palette and gave several examples
of how to use them. You animated sprites by switching costumes, learned
about drawing layers, and saw how layers affect the appearance of overlap-
ping sprites.

Looks and Sound 63

We then covered the commands in the Sound palette and explained
how to play audio files, drum sounds, and musical notes. You created a
complete dance scene with commands from both the Looks and the Sound
palettes, and you finished with a bang by making a fireworks animation
application.

In the next chapter, you’ll learn how to coordinate the work among
different sprites using message broadcasting and receiving. You’ll also
learn how to break up a large program into smaller and more manageable
pieces, called procedures. This concept is the key to writing more complex
applications.

Problems

1. Open the application Zebra.sb2, shown below. The application contains
a single sprite (the Zebra), which has three costumes. Write a script that
makes the Zebra move across the Stage and switch among its costumes
to create the illusion of running.

Zebra sprite
has three costumes.

2. Open the application Wolf.sb2, shown below. When you click the green
flag, the Wolf will play the WolfHowl sound, which takes about 4 seconds.
Create a script that changes the Wolf’s costumes in sync with the sound.
(Hint: Insert a wait block with an appropriate time delay after each cos-
tume switch.)

Wolf sprite has
three costumes.

Zebra .sb2

Wolf .sb2

64 Chapter 3

3. Open the application ChangingHat.sb2, shown below. The hat in this
application is a sprite that has five costumes. Create a script to switch
the Hat’s costume when it is clicked. Then create a game in which the
player dresses characters by clicking on different pieces of clothing.

Hat sprite has
five costumes.

4. Open Aquarium.sb2. The application contains six sprites, as illustrated
below. Try out different graphic effects to animate the aquarium. Here
are some suggestions:

a. Use the whirl effect on the Stage. Start with a large number like
1,000 to give the figure a wavy appearance.

b. Change the costumes for the Bubble1 and Bubble2 sprites at an
appropriate rate.

c. Move the Fish across the Stage while changing its costume.

d. Apply the ghost effect to the Tree sprite.

e. Use the color effect on the Coral and Bubble3 sprites.

Bubble1 sprite

Bubble3 sprite

Fish sprite

Bubble2 sprite

Tree sprite

Coral sprite

5. Open the application Words.sb2 (shown on the next page) and animate
the words using size and rotation. Create the two scripts shown in the
figure and run the application to see the result.

ChangingHat
 .sb2

Aquarium .sb2

Words .sb2

Looks and Sound 65

Sprite1
Sprite2

Script for Sprite1 Script for Sprite2

6. Open the application Joke.sb2, shown below. Finish the scripts for the
Boy and the Girl sprites to tell any joke you want.

Boy sprite

Girl sprite

Script for Boy Script for Girl

Joke .sb2

66 Chapter 3

7. Open Nature.sb2. The application contains three sprites, as illustrated
below. Animate the scene using both motion and sound. Here are some
suggestions:

a. The Bird sprite has two costumes that create a flying effect. Create
a script to fly the Bird across the Stage and play the Bird sound at
random times.

b. The Duck sprite has 12 costumes that show the Duck plucking a
fish out of the water and eating it. Create a script to move the Duck
across the Stage and play the Duck sound at random times.

c. The Seal sprite has four costumes that show the Seal playing with
the ball. Create a script to have the Seal play around and make the
SeaLion sound at random times.

Bird sprite

Duck sprite

Seal sprite

Nature .sb2

4
P r o c e D u r e S

This chapter explains how you can take a “divide
and conquer” approach to programming. Rather
than build your programs as one big piece, you’ll be
able to write separate procedures that you then put
together. Using procedures will make your programs
both easier to write and easier to test and debug. In
this chapter, you’ll learn how to:

•	 Use message broadcasting to coordinate the behavior of many sprites

•	 Use message broadcasting to implement procedures

•	 Use the “build your own block” feature of Scratch 2

•	 Use structured programming techniques

68 Chapter 4

Most of the applications we’ve developed so far contain only one sprite,
but most applications require multiple sprites that work together. An ani-
mated story, for example, might have several characters as well as different
backgrounds. We need a way to synchronize the sprites’ assigned jobs.

In this chapter, we’ll use Scratch’s message-broadcasting mechanism to
coordinate work among several sprites (this was the only way to implement
procedures in the previous version of Scratch). We’ll then discuss how to use
Scratch 2’s “custom blocks” feature to structure large programs as smaller,
more manageable pieces called procedures. A procedure is a sequence of
commands that performs a specific function. For example, we can create
procedures that cause sprites to draw shapes, perform complex computa-
tions, process user input, sequence musical notes, manage games, and do
many other things. Once created, these procedures can serve as building
blocks for constructing all sorts of useful applications.

message broadcasting and receiving
So how does the broadcast system in Scratch work in practice? Any sprite
can broadcast a message (you can call this message anything you like)
using the broadcast or broadcast and wait blocks (from the Events pal-
ette) shown in Figure 4-1. This broadcast triggers all scripts in all sprites
(including the broadcasting sprite itself) that begin with a matching when
I receive trigger block. All sprites hear the broadcast, but they’ll only act
on it if they have a corresponding when I receive block.

Figure 4-1: You can use the message-broadcasting and receiving blocks
to coordinate the work of multiple sprites .

Consider Figure 4-2. It shows four sprites: starfish, cat, frog, and bat.
The starfish broadcasts the jump message, and that broadcast is sent to all
sprites, including itself. In response to this message, both the cat and the
frog will execute their jump scripts. Notice how each sprite jumps in its own
way, executing a different script. The bat also receives the jump message,
but it does not act on it because it was not told what to do when it receives
this message. The cat in this figure knows how to walk and jump, the frog
can only jump, and the bat was taught only to fly.

The broadcast and wait command works like the broadcast com-
mand, but it waits until all message recipients have finished executing their
corresponding when I receive blocks before continuing.

Procedures 69

Figure 4-2: A broadcast message is received by all sprites, even by the sprite
that sent the broadcast .

Sending and Receiving Broadcasts
To demonstrate how message broadcasting and receiving work, let’s cre-
ate a simple application that draws randomly colored squares. When the
user clicks the left mouse button on the Stage, the Stage will detect this
event (using its when this sprite clicked block) and broadcast a message
that you’ll call Square (you can choose a different name if you want). When
the only sprite in this application receives this message, it will move to the
current mouse position and draw a square. Follow these steps to create the
application:

1. Start Scratch and then select New from the File menu to start a new
application. Feel free to change the cat’s costume to anything you like.

2. Add the when I receive block (from the Events palette) to the Scripts
Area of the sprite. Click the down arrow in this block and select new
message... from the drop-down menu. In the dialog that appears,
type Square and click OK. The name of the block should change to
when I receive Square.

3. Complete the script as shown in Figure 4-3. The sprite first lifts its pen
and moves to the current mouse position, indicated by the mouse x and
mouse y blocks (from the Sensing palette). It then picks a random pen
color, lowers its pen, and draws a square.

The sprite is now ready to handle the Square message when it is received.
The script in Figure 4-3 can be called a message handler since its job is to han-
dle (or process) a broadcast message.

SquareApp .sb2

70 Chapter 4

Draw a square.

Lift the pen up so as not to leave a mark
when moving to the mouse click point.

Move to the current mouse position,
indicated by the mouse x and mouse y
blocks (from the Sensing palette).
Pick a random pen color and put the
pen down.

Figure 4-3: The Square message handler

Now, let’s go to the Stage and add the code to broadcast the Square mes-
sage in response to a mouse click. Click the Stage in the Sprite List and add
the two scripts shown in Figure 4-4. The first script clears any pen marks
from the Stage when the green flag is clicked. The second script, which is
triggered when the user clicks the mouse on the Stage, uses the broadcast
block to tell the sprite that it is time to draw.

When the green flag is clicked,
clear the Stage. When the user
clicks the mouse on the Stage,
broadcast a message named
Square.

Figure 4-4: The two scripts for the Stage in the Square drawing application

The application is now complete. To test it, just click the mouse on the
Stage. It should respond by drawing a square in response to each mouse click.

Message Broadcasting to Coordinate Multiple Sprites
To see multiple sprites respond to the same broadcast message, let’s cre-
ate an application that draws several flowers on the Stage in response to a
mouse click. The Flowers application contains five sprites (named Flower1
through Flower5) that are responsible for drawing five flowers on the Stage.
Each sprite has its own costume, as shown in Figure 4-5. Note how the back-
ground of each costume is transparent. Note also the location of the center
of rotation for each costume (marked with the crossed lines).

Flower1 Flower2 Flower3 Flower4 Flower5

Figure 4-5: Flowers uses these five petal sprites (as shown
in the Paint Editor) .

Flowers .sb2

Procedures 71

When a sprite receives a message to draw its flower, it will stamp mul-
tiple rotated copies of its costume on the Stage, as illustrated in Figure 4-6.
The figure also shows sample outputs from the flower-drawing script we’ll
explore next.

drawn by
Flower1

drawn by
Flower2

drawn by
Flower3

drawn by
Flower4

drawn by
Flower5

Stamp the
costume.

Turn 30˚,
then stamp.

Turn another
30˚, then stamp.

Turn another
30˚, then stamp.

...
Figure 4-6: The Flowers application’s drawing process (left) and some possible flowers
(right)

When you click the mouse on the Stage, the Stage detects the mouse
click using the when this sprite clicked block. In response, it clears its
background and broadcasts a message called Draw. All five sprites respond
to this message by executing a script similar to the one shown in Figure 4-7.

Change color effect, brightness,
and size randomly.

Move to a random vertical
position. The x-position is fixed
(but different for each sprite).

Stamp rotated replicas of
the costume. Each sprite
may use a different repeat
count and turn angle.

Figure 4-7: The basic script used by each of the five sprites

The script starts by assigning random values to the color effect, bright-
ness effect, and size to change the appearance of the drawn flower. It then
moves to a random vertical position on the Stage and draws a flower by
stamping rotated replicas of its costume.

Open this application (named Flowers.sb2) and run it to see how it
works. Despite its simplicity, its output is intriguing. I encourage you to
design different costumes to create different types of flowers. Change the
costumes’ centers to discover even more interesting flower designs.

Now that you understand how message broadcasting and receiving
work, we’ll move on to introduce structured programming as a way to man-
age the complexity of large programs.

72 Chapter 4

creating Large Programs in Small Steps
The scripts that you’ve written up to this point are relatively short and
simple. Eventually, you’ll write longer, more complex scripts that contain
hundreds of blocks, and understanding and maintaining them will become
a real challenge.

An approach known as structured programming was developed in the mid-
1960s to simplify the process of writing, understanding, and maintaining
computer programs. Instead of having you write a single large program,
this approach calls for dividing the program into smaller pieces, each of
which solves one part of the overall task.

Consider, for example, the process of baking a cake. You may not think
about the individual steps as you bake, but the process follows a precise
recipe that lists the necessary steps. The recipe might include instructions
like (1) mix 4 eggs, 2 oz of flour, and 1 cup of water; (2) put the mixture in
a pan; (3) put the pan in the oven; (4) bake for 1 hour at 350°F; and so on.
In essence, the recipe breaks down the problem of baking a cake into dis-
tinct logical steps.

Similarly, when you design a solution for your programming problem,
it helps to break the problem down into manageable, “mind-sized” bites.
This approach helps you maintain a clear view of the whole program and
the relationships between its component parts.

Consider Figure 4-8, which shows a long script that draws a shape
on the Stage. You’ll see that you can divide this script into smaller logical
blocks by function. The first six blocks, for example, initialize the sprite.
The first repeat block draws a square, the second draws a triangle, and so
on. Using the structured programming approach, we can group related
blocks together under a representative name to form procedures.

Once we write these procedures, we can call them in a certain sequence
to solve our programming problem. Figure 4-8 also shows how the separate
procedures are put together to achieve the same function as the original
script. Clearly, the script that uses procedures (right) is more modular and
easier to understand than the original (left).

Procedures can also help you avoid writing the same code twice. If a
set of commands is executed in several places in a program, you can write a
procedure that performs these commands and use it instead. This strategy
to avoid duplicating code is referred to as code reuse. Note, for example, how
the Draw square procedure was reused in Figure 4-8.

Using procedures enables you to apply the “divide-and-conquer” strat-
egy to solve complex problems. You divide a large and complex problem
into subproblems and then conquer these simpler problems individually,
testing each one in isolation. After solving all the subproblems in isolation,
you put these pieces together in a way that solves the original problem. This
is similar to our cake-baking strategy: Our recipe divided the problem into
well-defined steps, and we executed these steps in the correct order to build
the final product (our cake).

Procedures 73

Initialize

Draw square

Draw square

Draw triangle

Initialize

Draw square

Draw triangle

Draw square

Figure 4-8: Breaking a large script into logical parts that each complete one function

At this point, you might ask, “How do we create these procedures?”
Before Scratch 2, you couldn’t build the Initialize block shown in Fig-
ure 4-8 and then call it from your script. The only way to emulate pro-
cedures and add some structure to a program was through Scratch’s
message-broadcasting mechanism. This has changed in Scratch 2, which
added the powerful “custom blocks” feature.

In this section, we’ll demonstrate the old way of doing things, because
that’s what you’ll see in scripts created in an older version of Scratch. How-
ever, the build-your-own-block feature will be explained in the next section,
and it will be used consistently throughout the rest of the book.

Since sprites receive their own broadcast messages, we can implement
procedures by having a sprite broadcast a message to itself and perform
the desired task under the when I receive trigger block. We can use the
broadcast and wait block to ensure that our procedures are called in the
correct sequence, thus adding structure and modularity to our programs.
Confused? Let’s see it in action.

Creating Procedures with Message Broadcasting
We’ll explore how procedures work and how they can improve your code by
re-creating the Flowers program from earlier.

Open the file Flowers2.sb2, which contains the new version of the pro-
gram. The script for the Stage is the same as before (the Stage broadcasts
a Draw message when it detects a mouse click), but this time, our program
uses only one sprite instead of five. This sprite has five costumes, leaf1

Flowers2 .sb2

74 Chapter 4

through leaf5, and will call a procedure to draw a flower for each costume.
Since we have a single sprite, we only need one copy of the drawing code
(not the five duplicate scripts we had in our first version). This makes the
program smaller and the code easier to understand. When the sprite in
this application receives the Draw message, it executes the script shown in
Figure 4-9.

Set the x-coordinate and the costume for
drawing the first flower.

We need to draw five flowers.
Set the y-coordinate of the flower we are
about to draw.
Call the drawing procedure.

Prepare for drawing the next flower.

Figure 4-9: When the sprite receives the Draw message, it calls DrawFlower
five times (in a loop) to draw five flowers .

The script sets the x -coordinate and the costume for drawing the first
flower and then enters a loop to draw five flowers. On each pass, the loop
sets the y -coordinate for the flower and calls DrawFlower by broadcasting a
message to itself. This call halts the script’s execution until DrawFlower is
done. When this happens, the Draw script resumes execution, adjusting the
x-coordinate and changing the costume in preparation for drawing the
next flower.

n o t e You can name a procedure anything you like, but I recommend selecting a name that
reflects that procedure’s purpose. This is especially helpful when you revisit a program
that you wrote months ago. For example, if you want to show players how many points
they have in a game, you might create a procedure named ShowScore. Naming this
procedure Mary or Alfred certainly won’t remind you (or anyone else reading your pro-
gram) what the procedure does.

The DrawFlower procedure is shown in Figure 4-10. It sets random val-
ues for the color effect, brightness, and sprite size before stamping rotated
versions of the current costume to draw a flower.

While the first version of the program contained five sprites and five
repeated scripts, the second version achieves the same result using a single
sprite that calls one procedure for drawing all five flowers. Open Flowers.sb2
and Flowers2.sb2 in two tabs of your browser and compare them. Isn’t the new
version much simpler to follow? Using procedures lets you make smaller pro-
grams that are easier to understand and maintain. This will become more
beneficial as you write programs to perform more complex tasks.

Procedures 75

Change color effect,
brightness, and size
randomly.

Stamp rotated replicas
of the costume.

Figure 4-10: The DrawFlower procedure

Building Your Own Block
As of Scratch 2, you can also create your own custom blocks. After you
make a custom block, it should appear in the More Blocks palette, where
you can use it as you would any other Scratch block.

To show you how to create and use these blocks, we’ll modify the
Flowers2 program we discussed in the last section to use a custom block
for the DrawFlower procedure. The following steps will guide you through
creating this new version of the application.

1. First, open the Flowers2.sb2 file that you looked at in the previous sec-
tion. Select File4Download to your computer from the File menu and
save the file as Flowers3.sb2. You can pick a different name if you prefer.

2. Click the thumbnail of the Flower sprite to select it. Then select the
More Blocks palette and click Make a Block. You should see the dialog
shown in Figure 4-11 (left). Type DrawFlower for the block’s name and
click OK. A new function block called DrawFlower should appear
under the More Blocks palette, and a define DrawFlower block should
appear in the Scripts Area as shown in the figure (right).

Type the name of the custom block
then click OK.

Clicking the arrow expands the
dialog to show the options section.

This block will show up under
the More Blocks palette.

This block will show up in the
Scripts Area.

Figure 4-11: The New Block dialog and the blocks that appear after creating the
DrawFlower custom block

76 Chapter 4

3. Detach the script connected to the when I receive DrawFlower
block and connect it to the define DrawFlower block, as shown in
Figure 4-12. This results in a new procedure, called DrawFlower,
that is implemented as a custom block. Delete the when I receive
DrawFlower block because it is no longer needed.

This script was originally connected
to the

block. Detach it and connect it to
the define DrawFlower block as
shown here.

Figure 4-12: The DrawFlower procedure implemented as a custom block

4. Now that we’ve created a DrawFlower procedure, we just need to call
it from the Draw message handler. Modify the Draw message handler
as shown in Figure 4-13. Note that we only replaced the broadcast
DrawFlower and wait block with our new DrawFlower custom block.

Replace the

block in the original script with the new
custom block.

Figure 4-13: Calling DrawFlower from the Draw message handler

The program is now complete, and you can test it. Click the mouse on
the Stage to verify that the program still works as before. See “Running
Without Screen Refresh” on page 77 to learn how you can speed up the
execution of this program.

Now that you know the basics behind custom blocks, you can take them
a step further by making blocks that can accept inputs.

Procedures 77

Passing Parameters to Custom Blocks
Let’s start by creating a custom block named Square, which draws a square
whose side length is 100 pixels, as shown in Figure 4-14.

Figure 4-14: A Square procedure that draws a
fixed-size square

running w i t hou t Scr e e n r e f r e Sh

Implementing the DrawFlower procedure with custom blocks brings up
another feature that can shorten the execution time of the drawing script . To
demonstrate, perform the following:

1 . Right-click the DrawFlower block under the More Blocks palette and
select edit from the pop-up menu . This should bring up the dialog from
Figure 4-11, except that the title will be Edit Block instead of New Block .

2 . Click the arrow next to Options, check the Run without screen refresh box
and click OK (see Figure 4-15) .

3 . Now, click the mouse on the Stage and see what happens . Instead of
seeing the individual rotating and stamping steps as the five flowers are
drawn, you should see them appear on the Stage almost at once . Here is
an explanation of what’s happening .

The DrawFlower procedure contains many blocks that change a sprite’s
appearance, including set color, set brightness, set size, and stamp .
After executing such a block, Scratch normally pauses for a while to refresh (that
is, redraw) the screen . This is why we were able to see the drawing progress
when the application ran before .

If you select the Run without screen refresh option, the blocks will run with-
out pausing to refresh the screen, allowing the procedure to run much faster .
The screen will refresh after Scratch executes the entire procedure .

In addition to speeding up a procedure, the Run without screen refresh
option helps to prevent the flickering that repeated redrawing can cause .

78 Chapter 4

The Square procedure has limited capabilities, because the drawn
square size is fixed once and for all. What if you want to draw squares with
different side lengths, such as 50, 75, or 200? You could define several cus-
tom blocks named Square50, Square75, and Square200, but creating mul-
tiple blocks that do essentially the same thing is, in most cases, a bad idea;
if you need to make a change, then you have to track down all the copies
and change those as well. A better solution is to have a single Square block
that allows the user to specify the desired side length when calling it.

You’ve actually been applying this concept since Chapter 1. For example,
Scratch provides a single move block that allows you to specify how many
steps a sprite will move by entering that number in a parameter slot. That
way, Scratch doesn’t have to provide a new block for every possible move
distance.

What we need to do, therefore, is add a parameter slot to our Square
block where the user can enter the side length. Figure 4-15 illustrates how
to modify the Square block.

Type steps for
the label.

Give the
parameter a
more meaningfulClick this button to

add a number input
to the block.

Click this
button to add
label text.

name.

Figure 4-15: Adding a number input to the Square block

First, right-click the Square block in the More Blocks palette (or the
define Square block in the Scripts Area) and select edit from the pop-up
menu to bring up the Edit Block dialog u. Click the small arrow next to
Options to expand the dialog and see the available options.

We want our Square block to accept the desired side length of a square,
which is a number, so click Add number input v to add a number slot to the
block. A number slot named number1 should be added to the Square block.

To indicate that the new slot is intended to carry the side length of the
square, change the default name from number1 to something meaningful
w, such as side, length, or sideLength. (Again, although Scratch doesn’t care
what label you use, you do! Pick a name that reflects the meaning of the
parameter.) Let’s use the name side for this example.

Procedures 79

Technically, that’s all what we need to do to add a number slot to our
procedure. If we click OK, we’ll have a Square block that takes a number
as input. We could drag this block into our scripts and specify the desired
length in the parameter slot, as in Square 50. But how would a user know
what the number passed to Square means? Does it mean an area of 50, a
diagonal of 50, a side length is 50, or something else?

Imagine if Scratch’s glide block were designed like this:

How would you know that the first slot represents time (in seconds) and
the second and third slots represent the x - and y -coordinates of the target
glide point? The Scratch designers made the glide block easier to under-
stand and use by adding labels to these slots as follows:

Let’s do the same thing for our Square block by adding text that
describes the meaning (or usage) of the parameter slot. Click Add label
text x, as shown in Figure 4-15, to add a label after the side parameter.
Type steps for the label text and click OK.

Now, if you examine the definition of the Square procedure in the
Scripts Area, you’ll see a small block (named side) added to its header, as
illustrated in Figure 4-16 (left). The move block still has the fixed num-
ber 100 inside it, but all we need to do now is drag the side block from the
header of the Square method and drop it over the parameter slot of the
move block to replace the number 100, as shown in Figure 4-16 (right).

Drag the side label
over the fixed number
(100) to replace it.

The complete
procedure

Figure 4-16: Modifying the Square procedure to use the side parameter

The label, side, that appears in the header of the Square procedure is
called a parameter. You can think of a parameter as a named placeholder.
We wanted our Square procedure to be able to draw squares of any size, so
instead of hard-coding a fixed number inside our procedure, we used a gen-
eral parameter named side. Users will specify the exact value of side when
they call the Square procedure. Let’s illustrate this point by modifying the
script in Figure 4-14 to use the new version of our Square procedure. The
required changes are illustrated in Figure 4-17.

80 Chapter 4

100

The value 100 is passed
to the Square procedure.

The parameter side
is set to 100.

Figure 4-17: Calling the Square procedure with side set to 100

Here, the number 100 (called an argument) is passed to the Square
procedure. When Square is executed, its side parameter is set to 100, and
this value is used to replace all occurrences of the side block inside the pro-
cedure. As you can see, the ability to specify different arguments to a proce-
dure is a powerful feature that adds a lot of flexibility to our programs.

We can enhance our Square procedure even further by making it accept
the square’s color as a second parameter, as shown in Figure 4-18. Here, we
added a second input parameter, called clrNum (short for color number),
which indicates the desired color of the square. The procedure now sets the
pen color to the value specified by clrNum before executing the drawing loop.
Edit the Square block to implement the changes shown in the figure.

Pa r a me t e rS V S. a rgume n t S

Although many programmers use the terms parameter and argument inter-
changeably, the two terms are in fact different . To clarify, consider the Average
procedure shown below, which computes the average of two numbers .

num1 and num1
are parameters
to the procedure.

The numbers 100
and 50 are called
arguments.

As defined, this procedure has two parameters named num1 and num2 .
A parameter defines an input to a procedure . You’d call this procedure with the
block shown at the left and specify some values or expressions inside the avail-
able slots . The values 100 and 50 in the above example are called arguments
of the procedure .

Of course, the number of arguments in the procedure call must match the
number of parameters in the procedure’s definition . When you call Average,
the parameters num1 and num2 receive the values 100 and 50, respectively,
because arguments and parameters are matched by position .

Procedures 81

Figure 4-18: This version of Square takes the desired color as a second parameter .

Let’s conclude this section with some useful tips for dealing with cus-
tom blocks:

•	 Custom blocks can’t be shared among sprites. If you create a cus-
tom block for, let’s say, Sprite1, then only Sprite1 can use that block.
Similarly, a custom block defined for the Stage can only be called by
scripts that belong to the Stage.

•	 Give your parameters meaningful names that indicate what they’re
used for.

•	 To delete a custom block, just drag its define block (that is, the hat
block) from the Scripts Area and drop it over the Palettes area. You
can only delete a define block if your project doesn’t contain any stack
blocks associated with it, so remove all uses of a custom block from your
scripts before trying to delete it.

•	 To delete a parameter of a custom block, click the parameter’s name
in the Edit Block dialog and then click the small X icon that appears
above the parameter’s slot.

•	 In addition to number inputs, you can also add string and Boolean
parameters. We’ll talk more about data types when we discuss variables
in the next chapter.

Now, you might wonder: Can a procedure call another procedure?
In the next section, you’ll learn about how to use nested procedure calls
to extend the power and usefulness of existing procedures.

t ry i t ou t 4-1

What about the thickness of the square’s border? Modify the Square procedure
to take a third parameter, called penSize, that specifies the size of the pen to be
used in drawing the square .

82 Chapter 4

Using Nested Procedures
As we noted earlier, a procedure should be designed to perform a single,
well-defined task. To execute multiple tasks, it is perfectly legal—and in
many cases desirable—to have one procedure call another as part of its
execution path. Nesting procedures this way gives you great flexibility in
structuring and organizing your programs.

To see this in action, let’s start with the Square procedure we wrote
in the previous section (see Figure 4-17). Now, we’ll create a new proce-
dure, called Squares, that draws four stretched squares, as illustrated in
Figure 4-19. It does so by calling the Square procedure four times. Each
call uses a different argument, and the output is four squares that share a
corner.

40

60

80

100

start

Figure 4-19: The Squares procedure and its output

We can now use Squares to create some interesting art. Figure 4-20
shows another procedure, called RotatedSquares, which calls the Squares
procedure several times, turning the shapes by some angle after each call.

count = 4 count = 5 count = 6

Figure 4-20: The RotatedSquares procedure and some possible outputs

In this procedure, the count parameter is used twice: once to determine
the number of repetitions and again to calculate the turn angle after calling
Squares. Setting count to 5, for example, will result in repeating the square
pattern of Figure 4-20 five times with a 72° (that is, 360° / 5) right turn after
each call. Experiment with different values to discover new patterns.

Let’s work out another example that demonstrates the power of nested
procedures: We’ll start with the Square procedure of Figure 4-16 and end
up with a checkerboard.

Create a new procedure (called Row) that draws a single row of
squares, as illustrated in Figure 4-21. Note that the number of squares

RotatedSquares
 .sb2

Checkers .sb2

Procedures 83

to draw is specified as a parameter. To keep things simple, we’ve fixed the
size of the individual squares at 20 steps instead of defining the size as a sec-
ond parameter to the Row procedure.

start

position
after 1st

loop

position
after 2nd

loop

position
after 4th

loop

Example

20

move backwards 80 steps

Figure 4-21: The Row procedure

Figure 4-21 also illustrates the result of calling Row with an argument
of 4, which makes the procedure call Square 20 steps four times in a loop.
The sprite’s position is adjusted after drawing each square to set the initial
position for the next square. After drawing the four squares, the last com-
mand returns the sprite to its initial position.

To draw another row of squares below the one shown in Figure 4-21, we
just need to move the sprite down 20 steps and then call the Row procedure
again. We can repeat this to draw as many rows as we want. Our Checkers
procedure, shown in Figure 4-22, does just that.

Figure 4-22: The Checkers procedure and its output

This procedure takes two parameters: the number of rows and the num-
ber of columns for the desired checkerboard. After drawing each row, the
procedure moves the sprite down 20 steps to prepare to draw the next row
of squares.

The examples presented in this section show how procedures can help
you divide a program into smaller, more manageable pieces. Once you’ve
written and tested your procedures, you can use them as building blocks
for more complex procedures without worrying much about the low-level
implementation details. You can then focus on the important task of put-
ting together the whole application using these procedures as building
blocks.

84 Chapter 4

working with Procedures
Now that you know why it’s important to break your program down into
smaller parts and tackle them one at a time, let’s discuss how to perform
this division. Every problem is different, and there is no “one size fits all”
solution—but that’s what makes this a fun puzzle!

In this section, we’ll first explore the top-down process of dividing a large
program into modular pieces with a clear logical structure. We’ll then dis-
cuss another way of building complex programs: the bottom-up process of
combining existing procedures. Figure 4-23 shows a high-level view of these
two approaches.

St
ar

t
En

d

En
d

St
ar

t

Top-Down
Process

Bottom-Up
Process

Figure 4-23: Illustrating top-down (left) and bottom-up (right) approaches

In both diagrams, the problem we want to solve is at the top, and the
individual steps that build our solution are at the bottom. You can start
from whichever level makes sense to you.

Breaking Programs Down into Procedures
The first step in solving any programming problem is to fully understand
the problem. After that, you can plan a general solution and divide it into
major tasks. There is no right or wrong way to go about dividing up any par-
ticular program, and with experience, you will get better at deciding what
“major” means. Working from the general solution down to its specifics
ensures that, at least, the overall logic of the program is correct.

To demonstrate this problem-solving strategy, let’s consider how we
would draw a house similar to that shown in Figure 4-24.

House .sb2

t ry i t ou t 4-2

What do you think will happen if you set the initial direction to 0° (up) instead of
90° (right)? Will the script work? If not, how could you fix it? Make this change
and run the script to test your answer .

Procedures 85

D
ra

w
in

g
Pl

an

side 1 side 2

door

triangle parallelogram

roof

A

E

B C D

F

 Draw side 1. The sprite ends up at point A
pointing right.

 Move horizontally 1 unit and draw the first
door. The sprite ends up at point B pointing
right.

 Move horizontally 2 units (i.e., to point C)
and draw side 2. The sprite ends up at
point C pointing right.

 Move horizontally 4 units (i.e., to point D)
and draw the second door. The sprite ends
up at point D pointing right.

 Move backward 7 units then up 5 units.
This puts the sprite at point E pointing right.

 Draw the roof. The roof drawing procedure
will first draw the triangle, then move to
point F, and finally draw the parallelogram.

Figure 4-24: We can draw this house by dividing the task into several smaller pieces and
handling each piece individually .

On one hand, working on this simple problem allows us to focus on
the solution strategy without getting bogged down in a lot of detail. On the
other hand, despite its apparent simplicity, the problem lends itself to many
different solutions. Here are some possibilities:

•	 We can view the house as made up of straight lines. In this case, draw-
ing each line is a major task.

•	 We can view the house as made up of six independent shapes: side 1,
side 2, two doors, a triangle, and a parallelogram. Drawing each shape
constitutes a major task.

•	 Since the two doors are identical, we can define one major task for
drawing a door and invoke that task twice.

•	 We can view the triangle and the parallelogram at the top of the house
as one unit, the roof. In this case, one major task is to draw the roof.

•	 We can view side 1 and its door as one unit, the front side. In this case,
one major task is to draw the front side.

There are many other possibilities, but that’s enough to illustrate the
point. The idea is to group tasks into small, understandable pieces that
you can deal with and then focus on one piece at a time. If you find simi-
lar pieces, try to come up with a common solution and apply it to all those
pieces.

With that in mind, our plan for drawing the house is also outlined in
Figure 4-24. This plan assumes that the sprite starts facing right at point A.
All we need to do is create a script that matches the steps outlined in the
plan. We’ll write a procedure (called Side1) to draw the left side of the
house as specified in step 1. We will also write three procedures (called
Door, Side2, and Roof) to draw the two doors, the right side of the house,
and the roof (as specified in steps 2, 3, 4, and 6), and we will connect all
these procedures with appropriate motion commands.

86 Chapter 4

Our House procedure is shown in Figure 4-25 alongside the drawing
steps that correspond to each procedure call. The procedure takes a single
parameter (called scale) that specifies the unit length (that is, a scaling
 factor) for drawing the house. Note how the Door procedure was reused
twice. Note also that the Roof procedure is responsible for drawing the
entire roof, and that it may contain different sub-procedures for drawing
the individual components of the roof.

Draw side 1. The sprite ends up at point A pointing
right.

Move horizontally 1 unit and draw the first door.
The sprite ends up at point B pointing right.

Move horizontally 2 units (i.e., to point C) and
draw side 2. The sprite ends up at point C pointing
right.

Draw the roof. The roof drawing procedure will
first draw the triangle, then move to point F, and
then finally draw the parallelogram.

Move horizontally 4 units (i.e., to point D) and
draw the second door. The sprite ends up at point D
pointing right.

Move backward 7 units, and then up 5 units.
This puts the sprite at point E pointing right.

Figure 4-25: The House procedure . Note how the major tasks align with the
drawing plan .

The individual procedures for drawing the house are shown in Fig-
ure 4-26. These procedures draw simple geometric shapes using the same
techniques you learned in Chapter 2.

The Side1, Door, and Side2 procedures draw 3×5, 1×2, and 9×5 rect-
angles (scaled by the factor scale), respectively. The Roof procedure has two
sub-procedures (named Triangle and Parallelogram) for drawing the two
parts of the roof. Note that the scaling factor scale was used consistently in
all these procedures. This allows us to draw larger or smaller houses by call-
ing the House procedure with a different argument.

t ry i t ou t 4-3

Did you notice that the Side1, Door, and Side2 procedures use almost identical
code? Create a new procedure named Rectangle that takes the length, width,
and scale as parameters and draws a rectangle of the specified dimensions .
Modify the Side1, Door, and Side2 procedures to call the new Rectangle
procedure .

Procedures 87

Figure 4-26: Procedures for drawing the house in Figure 4-24

Building Up with Procedures
Another way to deal with a large problem is to focus on the smaller details
first. If you solve a large problem’s smaller pieces (or find solutions that
already exist), you can then assemble the results from the bottom up to
reach a total solution.

To demonstrate this problem-solving technique, let’s start with a simple
procedure (called Leaf) that draws a single leaf as shown in Figure 4-27.
The procedure contains a repeat loop that runs twice to draw the two
halves of the leaf. Each half is drawn as a series of 15 short line segments
with a 6° turn angle between them. This is similar to the method of draw-
ing polygons we used in Chapter 2.

Draw one
half of the
leaf.

Turn 90˚ to prepare
for drawing the other
half.

To draw the two
halves of the leaf.

An enlarged view of the
leaf drawn by this script.

Initial (and
final) direction
of sprite.

Figure 4-27: The Leaf procedure and its output

FlowerFlake .sb2

88 Chapter 4

Using this procedure as a
starting point, we can now draw
a slightly more complex shape
that contains five leaves. Our
new procedure, called Leaves,
and its output are shown in
Figure 4-28. As you can see, we
only had to call the Leaf pro-
cedure in a repeat loop with
an appropriate turn angle in
between.

We can now use Leaf and
Leaves to build up something
that is even more complex: a branch with leaves on it. Our Branch proce-
dure and its output are illustrated in Figure 4-29. The sprite moves forward
40 steps, draws a single leaf (by calling the Leaf procedure), moves an addi-
tional 50 steps forward, draws five leaves (by calling the Leaves procedure),
and finally returns to its starting position.

40 50

Initial (and final)
direction of sprite.

Figure 4-29: The Branch procedure and its output

Let’s take this up another
notch. How about using the
Branch procedure to create a
complex drawing of a flower?
Our new procedure, called
Flower, and its output are
shown in Figure 4-30. The
 procedure simply calls the
Branch procedure six times in
a loop with 60° turn angle in
between.

We can keep going on and on, but the idea should now be clear. We
started with a simple procedure called Leaf and used it in a new proce-
dure (called Leaves) to create a complex pattern. The Branch procedure
relied on these two procedures to create something more complicated. The
Flower procedure then used Branch to draw an even more complex pat-
tern. If we wanted to, we could create a procedure that draws an entire tree
of flowers and yet another to draw a garden full of trees.

Figure 4-28: The Leaves procedure calls the
Leaf procedure five times with 72° turn angle
between each call .

Figure 4-30: The Flower procedure and its
output

Procedures 89

The point to take away from this example is that, regardless of the
complexity of the problem we are trying to solve, we can always build the
solution by gluing together a number of smaller, more manageable pieces.
Using this problem-solving technique, we start with short procedures that
solve very simple problems and then use them to create more sophisticated
procedures.

Summary
In this chapter, we introduced a number of fundamental concepts that
will be used extensively in the remainder of this book. First, we explained
the concept of message broadcasting for intersprite communication and
synchronization. After that, we introduced structured programming and
discussed how to use message broadcasting to implement procedures. We
then demonstrated the build-your-own-block feature of Scratch 2.0 and
explained how to pass arguments to procedures to make the procedures
more flexible. We went over several examples that demonstrated dividing
a large problem into smaller, more manageable pieces and explained how
to use procedures as the basic building blocks for creating large programs.
Last, we examined a bottom-up problem-solving technique, in which we
put together known solutions to smaller pieces of a problem to solve the
big problem.

In the next chapter, you’ll learn about the most important concept in
any programming language: variables. This introduction to variables will be
an essential next step in becoming a proficient programmer.

Problems

1. Write different procedures to draw each letter of your name. Name each
procedure for the letter that it draws. Then write a script that calls these
procedures so you can draw your name on the Stage.

2. Create the program shown below, run it, and explain how it works.

90 Chapter 4

3. Write a procedure that converts degrees Celsius to degrees Fahrenheit
as shown below. Have the script round the answer to the nearest inte-
ger. Test your procedure for different temperatures. (Hint: °F = (9 / 5)
× °C + 32.)

4. Write a procedure to create the house shown
on the right. Start by writing small proce-
dures that draw small parts of the house (for
 example, door, roof, windows, and so on).
Then combine these procedures to create
the entire house.

5. Write a procedure to compute the area of
a circle (A = πr2) given its radius, as shown
below. Use π = 3.14.

6. In this exercise, you’ll simulate the pressure experienced by fish under
water. Assume that the pressure P (in atmospheres) felt by a fish is
related to its depth d (in meters from the surface) by the relation:
P = 0.1d + 1. PressureUnderWater_NoSolution.sb2 contains a partial imple-
mentation of this simulation. Finish the script so that the fish says the
pressure it feels while swimming, as illustrated below:

0 meters

100 meters

50 meters

D
ep

th

PressureUnder
Water_

NoSolution .sb2

5
V a r i a B L e S

This chapter explains how to create scripts that can
read in and remember values. When you use variables,
you can write applications that interact with users and
respond to their input. Here’s what we’ll cover in this
chapter:

•	 The data types supported by Scratch

•	 How to create variables and manipulate them

•	 How to obtain input from users and write interactive programs

Though the scripts you wrote in the last four chapters helped you learn
important Scratch programming skills, they lacked many key elements of
a large-scale application. More complex programs can remember values
and decide to take an action based on certain conditions. This chapter will
address the first of these two deficiencies, and decision making will be cov-
ered in the next chapter.

92 Chapter 5

As you may have learned by now, scripts process and manipulate dif-
ferent types of data during their execution. These data can be input to
command blocks (for example, the number 10 in the move 10 steps com-
mand and the “Hello!” string in the say Hello! command) or output from
function blocks (like mouse x, y position and pick random), or data can
be entered by the user in response to the ask and wait command. For more
complex programs, you’ll often need to store and modify data to accom-
plish certain tasks. Data management in Scratch can be done using variables
and lists. This chapter will explore variables in detail. Lists will be explored
in Chapter 9.

This chapter begins with an overview of the data types supported in
Scratch. It continues with an introduction to variables and a discussion of
how to create and use them in your programs. Variable monitors will then
be explained and used in several interesting applications. After mastering
the basic concepts, you’ll learn how to use the ask and wait command to
get inputs from the user.

data types in Scratch
Many computer programs manipulate different kinds of data, including
numbers, text, images, and so on, to produce useful information. This is
an important programming task, so you’ll need to know the data types and
operations supported in Scratch. Scratch has built-in support for three data
types that you can use in blocks: Booleans, numbers, and strings.

A Boolean can have only one of two values: true or false. You can use
this data type to test one or more conditions and, based on the result, have
your program choose a different execution path. We’ll discuss Booleans in
detail in the next chapter.

A number variable can hold both integers and decimal values. Scratch
doesn’t distinguish between the two; they’re both classified as “numbers.”
You can round decimal numbers to the nearest whole number using the
round block from the Operators palette. You can also use the floor of (or
ceiling of) functions, available from the sqrt of block in the Operators pal-
ette, to get an integer from a specified decimal number. For example, floor
of 3.9 is 3 and ceiling of 3.1 is 4.

A string is a sequence of characters, which can include letters (both
upper- and lowercase), numbers (0 to 9), and other symbols that you can
type on your keyboard (+, –, &, @, and so on). You’d use a string data type
to store names, addresses, book titles, and so on.

What’s in the Shape?
Have you noticed that Scratch blocks and their parameter slots each
have particular geometric shapes? For example, the parameter slot in the
move 10 steps block is a rectangle with rounded corners, while the one
in the say Hello! block is a rectangle with sharp corners. The shape of the

Variables 93

parameter slot is related to the data type it accepts. Try entering your name
(or any other text) in the move 10 steps block; you’ll find that Scratch
allows you to enter only numbers into the rounded-rectangle slot.

Similarly, the shape of a function block indicates the data type it returns.
The meanings of the different shapes are illustrated in Figure 5-1.

Command Blocks

Boolean
parameter

String
parameter

Number
parameter

Function Blocks

Boolean

Number/
String

Arrow means “can go into.”

Figure 5-1: What the shapes of command and function blocks mean

Parameter slots have three shapes (hexagon, rectangle, and rounded
rectangle), while function blocks have only two shapes (hexagon and
rounded rectangle). Each shape is associated with a particular data type,
though you should note that a rounded-rectangle function block can
report either a number or a string.

Hexagon and rounded-rectangle slots take only function blocks of the
same shape, while a rectangular slot will accept any function block. The
good news is that Scratch prevents you from mismatching types, so you
don’t have to memorize this rule. Try dragging a hexagon-shaped block
into a rounded-rectangle slot; you won’t be able to drop it there because
the types are incompatible.

Automatic Data Type Conversion
As I mentioned above, a number parameter slot only accepts a rounded-
rectangle function block. All of the rounded-rectangle function blocks you’ve
dealt with so far—including x position, y position, direction, costume #,
size, volume, tempo, and so on—report numbers. Therefore, using them
inside a number slot (like the move 10 steps block) isn’t a problem. How-
ever, some rounded-rectangle function blocks, such as the answer block
from the Sensing palette or the join block from the Operators palette, can
hold either a number or a string. This brings up an important question:
What happens if we, for example, insert an answer block containing a
string into a number slot? Fortunately, Scratch automatically tries to con-
vert between data types as needed, as illustrated in Figure 5-2.

In this example, the user enters 125 in response to the Enter a num-
ber prompt. The user’s input is saved in the answer function block. When
this input is passed to the say command, it is automatically converted to a
string. When the same answer is passed to the addition operation (which
expects a number), it is converted to the number 125. When the addition
operation is performed, the result (25 + 125 = 150) is converted back to a
string, and “150” is passed to the say block. Scratch automatically attempts
to take care of these conversions for you.

94 Chapter 5

Figure 5-2: Scratch automatically converts between data types based on context .

Understanding the data types available in Scratch, the operations per-
mitted on these types, and how Scratch converts between them will help
you understand why things work the way they do. In the next section, you’ll
learn about variables and how to use them to store and manipulate data in
your programs.

introduction to Variables
Let’s say we want to create a software version of the game Whac-a-Mole. The
original game has a flat surface with several holes. The player uses a mal-
let to smack moles as they pop out of these holes. In our version, a sprite
appears at a random location on the Stage, stays visible for a short time,
and disappears. It waits a bit, and then appears again at a different location.
The player needs to click on the sprite as soon as it appears. Every time he
clicks on the sprite, he gains one point. The question for you as a program-
mer is, how do you keep track of the player’s score? Welcome to the world of
variables!

In this section, I’ll introduce variables, one of the most important ele-
ments of any programming language. You’ll learn how to create variables
in Scratch and how to use them to remember (or store) different types of
data. You’ll also explore the available blocks for setting and changing the
values of variables in your programs.

What Is a Variable?
A variable is a named area of computer memory.
You can think of it as a box that stores data, includ-
ing numbers and text, for a program to access as
needed. In Figure 5-3, for example, we depict a
 variable named side whose current value is 50.

When you create a variable, your program
sets aside enough memory to hold the value of the
variable and tags the allocated memory with that
variable’s name. After creating a variable, you can
use its name in your program to refer to the value

side

50

name of the
variable

value of the
variable

Figure 5-3: A variable
is like a named box that
contains some value .

Variables 95

it represents. For example, if we have a box (that is, a variable) named
side that contains the number 50, we can construct a command such as
move (3*side) steps. When Scratch executes this command, it will locate
the box named side in computer memory, grab its contents (in this case, the
number 50), and use that value to replace the side label inside the move
(3*side) steps block. As a result, the sprite will move 150 (that is, 3 × 50)
steps.

In our Whac-a-Mole game, we need a way to remember the player’s
score. To do that, we can reserve some space in the computer’s memory
(like a box) to store the score. We also need to give that box a unique label,
let’s say score, which will let us find it whenever we need to know or change
what’s inside.

When the game starts, we’ll tell Scratch to “set score to 0,” and Scratch
will look for the box labeled score and put the value 0 inside it. We’ll also
tell Scratch to “increase score by 1” any time the player clicks on the sprite.
In response to the first click, Scratch will look inside the score box again,
find our 0, add 1 to it, and put the result (which is 1) back in the box.
The next time the player clicks on the sprite, Scratch will again follow our
“increase score by 1” command to increment score and store the resulting
value of 2 in the box.

You’ll see the actual Scratch blocks for these operations in a moment.
For now, notice that the value of score changes throughout the program.
This is why we call it a variable—its value varies.

One important use of variables is to store the intermediary results of
evaluating an algebraic expression. This is similar to the way you do mental
math. For example, if you were asked to find 2 + 4 + 5 + 7, you might start
by adding 2 + 4 and memorizing the answer (6). You’d then add 5 to the
previous answer (which is stored in your memory) and memorize the new
answer, which is 11. Finally, you’d add 7 to the previous result to get the
final answer of 18.

To illustrate how variables can be used for temporary storage, let’s say
that you want to write a program to compute the following expression:

1 5 5 7

7 8 2 3

/ /

/ – /
() + ()
() ()

You could evaluate the whole thing with one command, but cramming
everything into one statement makes it hard to read, as shown below:

Another way to write the program is to evaluate the numerator and
denominator individually and then use the say block to display the result
of their division. We can do that by creating two variables called num (for
numerator) and den (for denominator) and setting their values as shown in
Figure 5-4.

96 Chapter 5

Computer Memory

...
0.91428
0.2083

...

num

den

1/5+5/7

7/8–2/3

Figure 5-4: Two variables (num and den) hold the value of the expression’s
numerator and denominator, respectively .

Take a look at how our variables are arranged in computer memory.
Here, num is like a tag referring to the location in memory where the
result of evaluating (1 / 5 + 5 / 7) is stored. Similarly, den refers to where
(7 / 8 – 2 / 3) is stored. When the say command is executed, Scratch grabs
the contents of memory labeled num and den. It then divides the two num-
bers and passes the result to the say command for display.

We could break this expression down even further by evaluating each
fraction individually before displaying the result of the total expression, as
shown in Figure 5-5.

Computer Memory

...
0.2

0.7142

...

a

b

1/5

5/7

0.875
0.6666

c

d 2/3

7/8

Figure 5-5: Using four variables (a, b, c, and d) to hold the four fractions
in the expression

Here, we use four variables (named a, b, c, and d) to hold the four frac-
tions in our mathematical expression. The figure also depicts the memory
allocation; this time, you can see four variables and their contents.

Although these three programs give the same answer, each implemen-
tation follows a different style. The first program puts everything in one
statement, which is tough to read. The third program breaks things down
to a greater level of detail, but that can be hard to read, too. The second
solution breaks the expression down to a reasonable level and uses vari-
ables to both make the program easier to understand and clearly show the
major parts of the expression (the numerator and the denominator). As
Goldilocks would say, this one is just right.

This simple example demonstrates how a problem can have multiple
solutions. Sometimes you might be concerned about a program’s speed or
size, and other times your goal might be readability. Since this is an intro-
ductory programming book, the scripts in this book are written to empha-
size readability.

Now that you understand what variables are and why you’d want to use
them, let’s make some variables and take our Scratch applications a step
further.

Variables 97

Creating and Using Variables
In this section, we’ll explore how to create and use variables through a
 simple application that simulates rolling a pair of dice and displays their
sum, as illustrated in Figure 5-6.

Background
image

 Die2 sprite

 Die1 sprite

 Player sprite

The costumes of the
 Die1 and Die2

sprites

Figure 5-6: The user interface of the dice simulator

Our dice simulator contains three sprites: Player, Die1, and Die2.
The Player sprite manages the simulation. When the green flag icon is
pressed, this sprite generates two random numbers between 1 and 6 and
saves those values in two variables named rand1 and rand2, respectively. It
then broadcasts a message to the other two sprites (Die1 and Die2) to show
the randomly generated values; Die1 will show the value of rand1, and Die2
will show rand2. After that, the Player sprite adds rand1 to rand2 and dis-
plays the sum using the say block.

Let’s build this application from the ground up. Open the file
DiceSimulator_NoCode.sb2. This file contains the background image for
the Stage as well as the three sprites used in the application. We’ll create
all the scripts we need one at a time.

First, click the thumbnail of the Player sprite to select it. Select the Data
palette and click Make a Variable, as shown in Figure 5-7 (left). In the dialog
that appears, as shown in Figure 5-7 (right), type the name of the variable
and select its scope. A variable’s scope determines which sprites can write to
(or change the value of) that variable, as I will explain in more detail in the
next section. For this example, enter rand1 for the variable’s name and select
the For all sprites option for the variable’s scope. Click OK when done.

Select the Data palette
and then click Make a
Variable.

Type the variable’s
name, select its
scope, and click OK.

Figure 5-7: Creating a variable, naming it, and specifying its scope

DiceSimulator_
NoCode .sb2

98 Chapter 5

After you create the variable, several new blocks related to it will appear
in the Data palette, as illustrated in Figure 5-8.

Variable name. Use the checkbox to show/
hide the variable’s monitor on the Stage.

This instruction allows you to set the value of
the variable.

This instruction allows you to change the
value of the variable by a fixed amount
(positive or negative).
These instructions allow you to show/hide the
variable’s monitor while the script is running.

Figure 5-8: The new blocks that appear when you create the rand1 variable

You can use these blocks to set a variable to a specific value, change it
by a fixed amount, and show (or hide) its monitor on the Stage. A variable’s
monitor, as you’ll learn in “Displaying Variable Monitors” on page 106, dis-
plays the current value stored in that variable.

Repeat the procedure I outlined above
to create another variable, named rand2.
The Data palette should now contain a
second variable block (named rand2),
and the down arrows on the blocks of
Figure 5-8 should let you choose between
rand1 and rand2. Now that we’ve created
the two variables, we can build the script
for the Player sprite. The complete script
is shown in Figure 5-9.

n a ming Va r i a BL e S

Over the years, people have come up with different ways to name the vari-
ables in their programs . One popular convention is to start the name with a
lowercase letter and capitalize the first letter of each additional word, such as
in sideLength, firstName, and interestRate .

Although Scratch allows variable names to start with numbers and con-
tain white spaces (for example, 123Side or side length), most programming
languages don’t, so I recommend that you avoid these unusual names for your
variables . And while you can name a variable anything you want, I highly rec-
ommend using descriptive and meaningful names . Single-letter variables like w
and z should be kept to a minimum unless their meaning is very clear . On the
other hand, names that are too long can make your script harder to read .

Also, note that variable names in Scratch are case sensitive, meaning that
side, SIDE, and siDE are all unique variables . To avoid confusion, try not to
use variables in the same script whose names differ only in case .

Figure 5-9: The script for the Player
sprite

Variables 99

The first command sets rand1 to a random number between 1 and 6.
Think back to our box analogy: This command causes the sprite to find the
box labeled rand1 and put the generated random number inside it. The sec-
ond command assigns rand2 another random value between 1 and 6. Next,
the script broadcasts a message called Roll to the other two sprites (Die1 and
Die2) to notify them that they need to switch their costumes as specified
by rand1 and rand2. Once the Die1 and Die2 sprites have finished their job,
the script resumes and displays the sum of the numbers on the faces of the
dice using the say block. Let’s look at the Roll message handler for the Die1
sprite, shown in Figure 5-10.

Drag the variable’s monitor block
onto the parameter slot.
The complete procedure

Figure 5-10: To use a variable in a command block, just drag that variable
over the parameter slot of that block .

After creating the script shown at the top right of the figure, drag the
rand1 block from the Data palette to the parameter slot of the switch to
costume block to form the complete script (bottom right). In this script,
the repeat block changes the costume of the die randomly 20 times to sim-
ulate rolling the die (you can change this number if you want). After that,
the die sets its costume to the number specified by rand1. Recall that each
die has six costumes that correspond to numbers 1 through 6 in order. That
means if rand1 were 5, the last switch to costume command would display
the costume that has five dots in it.

Now, we can create the script for the Die2 sprite, which should be nearly
identical to the one we made for Die1. Since Die2 changes its costume based
on rand2, all you need to do is duplicate the Die1 script for Die2 and replace
rand1 with rand2.

Our dice simulator is now complete, so let’s test it out. Click the green
flag icon to see the simulation in action. If the application doesn’t work,
examine the file DiceSimulator.sb2, which contains the correct implementa-
tion of the program.

100 Chapter 5

The Scope of Variables
Another important concept related to variables is scope. The scope of a vari-
able determines which sprites can write to (or change the value of) that
variable.

You can specify the scope of a variable when you create it by selecting
one of the two options you saw in Figure 5-7. Choosing For this sprite only
creates a variable that can be changed only by the sprite that owns it. Other
sprites can still read and use the variable’s value, but they can’t write to it.
The example shown in Figure 5-11 illustrates this point.

count is a variable whose
scope is set to For this
sprite only.

The Penguin sprite
can read the count
variable of the Cat
sprite.

Figure 5-11: Only the Cat sprite can write to count .

In this figure, the Cat sprite has a variable, named count, with the scope
For this sprite only. The Penguin sprite can read count with the x position of
Penguin block from the Sensing palette. When you select Cat as the second
parameter of this block, the first parameter will let you choose an attribute
of the Cat sprite, including one of its variables.

Scratch, however, doesn’t provide a block that allows the Penguin sprite
to change the count variable. This way, the Penguin sprite can’t tamper with
count and cause undesirable effects for scripts run by the Cat sprite. It’s
good practice to use the For this sprite only scope for variables that should
only be updated by a single sprite.

Variables created with the For this sprite only scope are said to have
local scope, and they can be called local variables. Different sprites can use the
same name for their local variables without any conflict. For example, if

ScopeDemo .sb2

t ry i t ou t 5-1

Select the Player sprite and create a new variable called sum . Set the scope
for this variable to For this sprite only . Modify the last block of the Player script
to use this new variable, like this:

Now select the Die1 (or Die2) sprite and look under the Data palette . Can
you explain why you don’t see the sum variable there?

Variables 101

you have two car sprites in a racing game, each might have a local variable
named speed that determines the car’s speed of motion on the Stage. Each
car sprite can change its speed variable independently of the other. This
means that if you set the speed of the first car to 10 and the speed of the
 second to 20, the second car should move faster than the first.

Variables with the scope For all sprites, on the other hand, can be read
and changed by any sprite in your application. These variables, often called

Data t y Pe of a Va r i a BL e

At this point, you might wonder, “How does Scratch know the data type of a
variable?” The answer is, it doesn’t! When you create a variable, Scratch has
no idea whether you intend to use that variable to store to a number, a string,
or a Boolean . Any variable can hold a value of any data type . For example,
all of the following commands are valid in Scratch .

Set side to an integer value.

Set side to a decimal value.

Set side to a single character.

Set side to a string.

Set side to a Boolean value
(true in this case).

It’s up to you to store the correct values in your variables . As I described
earlier in this chapter, however, Scratch will try to convert between data types
depending on the context . To see what happens when you store an incorrect
data type in a variable, consider these two examples:

The string “Nonsense” is converted to a num-
ber (0) and passed to the move command.

The string “100” is converted to a number
(100) and passed to the move command.

Since the move command expects a number parameter, Scratch will auto-
matically try to convert the value stored in the side variable to a number before
passing it to the move command . In the first script (left), Scratch can’t convert
the string “Nonsense” to a number . Rather than showing an error message,
Scratch will silently set the result of the conversion to 0 and pass this value to
the move command . As a result, the sprite won’t move . On the other hand,
in the second script (right), Scratch ignores the whitespace in the string and
passes the resulting number to the move block, so the sprite moves 100 steps
forward . Note that if the target block had expected a string instead of a num-
ber, Scratch would have passed the string as it was, whitespace included .

102 Chapter 5

global variables, are useful for intersprite communication and synchroniza-
tion. For example, if a game has three buttons that allow the user to select
a level to play, you can create a global variable named gameLevel and have
each button sprite set this variable to a different number when clicked.
Then you can easily find out the user’s choice by examining gameLevel.

Selecting the For all sprites option also enables the Cloud variable check-
box in Figure 5-7. This feature allows you to store your variables on Scratch’s
server (in the cloud). Blocks for cloud variables have a small square in front
of them to distinguish them from regular variables, like this:

Anyone who views a project you’ve shared on the Scratch website can
read the cloud variables in the project. For example, if you share a game,
you can use a cloud variable to track the highest score recorded among all
the players. The score cloud variable should update almost immediately for
everyone interacting with your game. Because these variables are stored on
Scratch servers, they keep their value even if you exit your browser. Cloud
variables make it easy to create surveys and other projects that store num-
bers over time.

Now that you understand scope, it’s time to learn about updating
 variables—and then use that knowledge to create more interesting
programs.

Changing Variables
Scratch provides two command blocks that
allow you to alter variables. The set to com-
mand directly assigns a new value to a vari-
able, regardless of its current contents. The
change by command, on the other hand,
is used to change the value of a variable
by a specified amount relative to its cur-
rent value. The three scripts in Figure 5-12
demonstrate how you could use these com-
mands in different ways to achieve the same
outcome.

All three scripts in the figure start by
setting the values of two variables, sum and
delta, to 0 and 5, respectively. The first script
uses the change command to change the
value of sum by the value of delta (that is,
from 0 to 5). The second script uses the set
command to add the current value of sum to
the value of delta (0 + 5) and store the result
(5) back into sum. The third script achieves the same result with the aid of
a temporary variable named temp. It adds the value of sum to delta, stores
the result in temp, and finally copies the value of temp into sum.

Figure 5-12: Three methods for
changing the value of a variable

Variables 103

After executing any of the scripts in Figure 5-12, sum will contain
the number 5, making these scripts functionally equivalent. Note that the
method used in the second script is a common programming practice, and
I recommend that you study it for a moment to become comfortable with it.
Now let’s see the change command in action.

Spider Web

We can create a spider web by drawing several hexagons of increasing size,
as shown in Figure 5-13. The Triangle procedure draws an equilateral
tri angle with a variable side length, while the Hexagon procedure calls
Triangle six times with a 60° (that is, 360° / 6) right turn after each call.
The figure clearly shows how the hexagon is made up of the six triangles.

sideLength

Figure 5-13: Creating a spider web by drawing several hexagons of increasing size

The SpiderWeb procedure simply calls Hexagon repeatedly with a dif-
ferent value of the sideLength variable each time. This results in the concen-
tric (that is, having the same center) hexagons you see in the figure. Note
how the change command is used to set the value of sideLength inside the
repeat loop. Reproduce the SpiderWeb procedure, run it, and see how it
works.

Pinwheel

This example is similar to the previous one except that this time, we’ll use
a variable to control the number of triangular repetitions. The resulting
procedure (called Pins) is shown in Figure 5-14. The Pinwheel procedure
in the same figure works like the SpiderWeb procedure above, but we also
change the pen’s color each time through the loop for a fun rainbow effect.
Some outputs of the Pinwheel procedure for different pin counts are shown
in the figure. Experiment with this procedure to see what else you can
create.

SpiderWeb .sb2

Pinwheel .sb2

104 Chapter 5

Figure 5-14: Creating a pinwheel by rotating an equilateral triangle several times

Now that we’ve explored the fundamentals of variables, you might won-
der what happens to variables when you duplicate a sprite. Does the dupli-
cate share the parent sprite’s variables, or does it have its own copies? Do
clones have access to global variables? We’ll answer these questions in the
next section.

Variables in Clones
Every sprite has a list of properties associated with it, including its current
x-position, y -position, direction, and so on. You can imagine that list as a
backpack holding the current values of the sprite’s attributes, as illustrated
in Figure 5-15. When you create a variable for a sprite with a scope of For
this sprite only, that variable gets added to the sprite’s backpack.

When you clone a sprite, the clone inherits copies of the parent sprite’s
attributes, including its variables. An inherited property starts out identi-
cal to the parent’s property at the time the clone is created. But after that,
if the clone’s attributes and variables change, those changes don’t affect
the parent. Subsequent changes to the parent sprite don’t affect the clone’s
properties, either.

t ry i t ou t 5-2

Alter the Pinwheel program to hide the sprite . This should make it easier for you to
watch the drawing without the sprite getting in the way .

Variables 105

STAGE

cl
on

e

Variables with scope

clone

Sprite’s backpack

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

All variables with
scope For this
sprite only

Clone1 backpack

All variables with
scope For this
sprite only

Clone2 backpack

All variables with
scope For this
sprite only

Stage’s backpack
costume #, costume
name, volume #,
graphic effects, etc.

For all sprites

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

Figure 5-15: Clones inherit copies of their parent’s variables

To illustrate, let’s say the parent sprite owns a variable named speed
whose current value is 10. When you clone the parent, the new sprite will
also have a variable named speed with the value 10. After that, if the parent
sprite changes speed to 20, the value of speed in the clone will stay at 10.

You can use this concept to distinguish between clones in your applica-
tions. For example, let’s look at the program in Figure 5-16.

The parent sprite and
its three clones, each
with its own unique ID

Figure 5-16: Using variables to distinguish between clones

CloneIDs .sb2

106 Chapter 5

The parent sprite in this example owns a variable named cloneID. When
the green flag is clicked, it starts a loop to create three clones, and it sets
cloneID to a different value (1, 2, or 3 in this case) before creating a clone.
Each clone comes to life with its own copy of cloneID initialized to a differ-
ent value. You could now use an if block, which we’ll study in depth in the
next chapter, to check for the clone’s ID and have it perform a correspond-
ing action.

Now, let’s discuss how clones can interact with global variables. Recall
from Figure 5-15 that variables with scope For all sprites can be read and
written by the Stage and all sprites, including clones. As an example, the
program in Figure 5-17 uses this fact to detect when all clones of the parent
sprite have disappeared.

Figure 5-17: Using a global variable to track when clones are deleted

In this script, the parent sprite sets the global variable numClones to
5 and creates five clones. It then waits for numClones to become 0 before
announcing the end of the game. The clones appear at random times and
locations on the Stage, say “Hello!” for two seconds, and then disappear.
Before a clone is deleted, it decreases numClones by 1. When all five clones
are gone, numClones reaches 0, the main script stops waiting, and the origi-
nal sprite says “Game Over!”

In the following section, you’ll learn about variables’ monitors, which
allow you to see, and even change, the current values stored in variables.
The ability to view and change a variable on the Stage will open the door
to creating totally new kinds of applications.

displaying Variable monitors
You’ll often find yourself wanting to see the current value stored in a vari-
able. For example, when one of your scripts doesn’t work as expected, you
might want to track some of its variables to see if they change correctly.
Using variable monitors can help you with this debugging task.

You can display a Scratch variable on the Stage as a variable monitor.
Checking or unchecking the box next to a variable’s name allows you to
show or hide a variable’s monitor on the Stage, as illustrated in Figure 5-18.
You can also control a monitor’s visibility from within your script with the
show variable and hide variable commands.

ClonesAnd
GlobalVars .sb2

Variables 107

Monitor of the
score variable

Figure 5-18: Show a variable’s monitor by checking the box
next to its name .

Monitors can be used as readouts or controls, which display or allow
you to change a variable’s contents, respectively. Double-click the monitor’s
box on the Stage to choose a normal readout (the default state), large read-
out, or slider control. When you choose to display a slider, you can set its
range by right-clicking the slider and selecting the set slider min and max
option from the pop-up menu, as shown in Figure 5-19.

Figure 5-19: Setting the minimum and maximum values for a monitor in slider mode

Using a slider allows you to change the value of a variable while a script
is running, which is a convenient way for users to interact with your applica-
tion. You can see a simple example of using the slider control in Figure 5-20.

Figure 5-20: Adjusting Stage color with a slider

In this example, dragging the slider’s handle changes the value of
the stageColor variable, which is a parameter in the set color effect to com-
mand. Assuming this script belongs to the Stage, dragging the slider should
change the Stage’s background color.

StageColor .sb2

108 Chapter 5

n o t e A variable’s monitor also indicates its scope. If a variable belongs to one sprite, its
monitor should show the sprite name before the variable name. For example, the moni-
tor Cat speed 0 indicates that speed belongs to Cat. If the speed variable were a
global variable, its monitor would only say speed 0. The difference between the two
cases is illustrated in the following figure.

This monitor indicates that the speed
variable belongs to the Cat sprite.

This monitor indicates that speed is
a global variable.

using Variable monitors in applications
Now that you know the basics behind variable monitors, I’ll show you some
ways you could use them to add some extra functionality to your Scratch
applications.

The ability to use monitors as both displays and controls opens the
door for a wide range of applications, including games, simulations, and
interactive programs. Let’s explore some examples that make use of moni-
tors in the following subsections.

Simulating Ohm’s Law
Our first example is a simulation of Ohm’s law. When a voltage (V) is
applied across a resistor (R), a current (I) will flow through that resistor.
According to Ohm’s law, the amount of current is given by this equation:

Current I
Voltage V

Resistance R
() = ()

()

Our application allows the user to change the values of V and R using
slider controls. Then it calculates and displays the corresponding value of
the current, I. The user interface for this application is shown in Figure 5-21.

Current
monitor

 The Light sprite
changes the brightness
of the bulb.

Resistance
control Three sprites whose

sizes show the relation
between V, I, and R.

Voltage
control

Figure 5-21: User interface for the Ohm’s law application

OhmsLaw .sb2

Variables 109

The slider for the battery voltage (V) has a range of [0, 10], and the
slider for the resistor (R) has a range of [1, 10]. When the user changes V
or R with the sliders, the application calculates the corresponding value of
the current (I) that flows in the circuit. The brightness of the bulb changes
in proportion to the value of the current passing through it: The higher the
current, the brighter the light bulb. The sizes of the V, I, and R letters in the
figure also change to indicate the relative values of these quantities.

In total, the application has five sprites
(named Volt, Current, Resistance, Equal, and
Light) and three variables (named V, I, and
R). Everything else you see in Figure 5-21
(the battery, wires, socket, and so on) is part
of the Stage’s backdrop image. The main
script that drives the application, which
belongs to the Stage, is shown Figure 5-22.

The script initializes the values of V and
R and then enters an infinite loop. On each
pass through the loop, it calculates I using
the present values of V and R, which are set
by the user through the slider controls. It
then broadcasts a message to the other sprites
in the application to update their appearance in relation to the calculated
values. Fig ure 5-23 shows the response of the Volt, Current, Resistance, and
Light sprites (which show the letters V, I, R, and the light bulb, respectively)
when they receive the Update message.

Script for the Volt sprite
(which shows the letter V)

Script for the Current sprite
(which shows the letter I)

Script for the Resistance sprite
(which shows the letter R)

Script for the Light sprite
(which shows the light bulb)

Figure 5-23: Scripts triggered in response to the Update message

When the Update broadcast is received, the Volt, Current, and Resistance
sprites change their size (from 100 percent to 200 percent of their original
size) in relation to the current values of their respective variables. The Light
sprite executes the set ghost effect to command to change its transpar-
ency level in proportion to the value of I. This gives the light bulb a realistic
visual effect that simulates an actual bulb.

Figure 5-22: Main script of
Ohm’s law application

110 Chapter 5

Demonstrating a Series Circuit
Our second example simulates a circuit that contains a battery and three
resistors connected in series. The user can change the battery voltage as
well as the resistor values using the sliders. The current that flows through
the resistors and the voltages across the three resistors are shown using
large display readouts. You can see the interface for the application in
Figure 5-24. (Note that the color bands on the resistors do not represent
the actual values of the resistors.)

I monitor

V1 monitor

V2 monitor

V3 monitorSlider
controls

Figure 5-24: An application that demonstrates a series circuit

The equations that govern the operation of this circuit are shown below.
We can calculate the current that flows in the circuit by dividing the battery
voltage, V, by the sum of the three resistances. After that, the voltage across
each resistor is calculated by multiplying the current by the value of that
resistor:

Total Resistance: Rtot = R1 + R2 + R3

Current through the circuit: I = V ÷ Rtot

Voltage across R1: V1 = I × R1

Voltage across R2: V2 = I × R2

Voltage across R3: V3 = I × R3

SeriesCircuit .sb2

t ry i t ou t 5-3

Open the Ohm’s law simulator to run it, and study the scripts to understand how
it works . What do you think would happen if you added the command change
color effect by 25 at the end of the script for the Light sprite? Implement this
change to check your answer . What are some ways you could enhance this
application?

t ry i t ou t 5- 4

Open the series circuit simulator application and run it . Experiment with different
values of R1, R2, R3, and V . Watch the calculated values of V1, V2, and V3 as
you drag the slider controls . What is the relationship between the voltage sum
(V1 + V2 + V3) and the battery voltage? What does this tell you about the voltage
relation in series circuits? You can make an interesting enhancement to the appli-
cation by adding an image of a switch that opens or closes the circuit, as shown
below . When the switch is open, no current will flow in the circuit . Try to imple-
ment this change using the hints given below .

Switch sprite has
two costumes

(On, Off).

Script for the
Switch sprite

Change how the main script calculates the current (I).

Same as before

Switch if Off. Set current to 0.

SeriesCircuit
WithSwitch .sb2

Variables 111

This application has no sprites,
but when the green flag is clicked, the
script shown in Figure 5-25, which
belongs to the Stage, is executed.

This script takes care of the math
for us and displays the results in the
readouts on the Stage. Note that while
the slider controls for resistors R2 and
R3 can change from 0 to 10, the mini-
mum value for R1 was intentionally set
to 1. This ensures that Rtot is always
greater than 0 and lets us avoid divid-
ing by 0 when calculating the value of
the current.

Most of the work for this applica-
tion went into designing the interface
(that is, the background of the Stage). After that, all we had to do was to
position the displays and sliders at the right locations on the Stage.

Visualizing a Sphere’s Volume and Surface Area
Our third example is an interactive application for calculating the volume
and surface area of a sphere. The user changes the sphere’s diameter by
clicking some buttons on the user interface, and the application automati-
cally calculates and displays the corresponding volume and surface area.

Sphere .sb2

Figure 5-25: Script that runs when the
green flag is clicked

t ry i t ou t 5- 4

Open the series circuit simulator application and run it . Experiment with different
values of R1, R2, R3, and V . Watch the calculated values of V1, V2, and V3 as
you drag the slider controls . What is the relationship between the voltage sum
(V1 + V2 + V3) and the battery voltage? What does this tell you about the voltage
relation in series circuits? You can make an interesting enhancement to the appli-
cation by adding an image of a switch that opens or closes the circuit, as shown
below . When the switch is open, no current will flow in the circuit . Try to imple-
ment this change using the hints given below .

Switch sprite has
two costumes

(On, Off).

Script for the
Switch sprite

Change how the main script calculates the current (I).

Same as before

Switch if Off. Set current to 0.

SeriesCircuit
WithSwitch .sb2

112 Chapter 5

To make the application more appealing, the size of the sphere displayed
on the Stage is also changed in proportion to the selected diameter. The
user interface for the application is illustrated in Figure 5-26.

Click the left and right arrows
to change the diameter of the
sphere.

The size of the sphere
changes with the selected
diameter.

The application automatically
calculates the volume (V) and
surface area (S).

Figure 5-26: User interface for the sphere application

The application contains three sprites: the two arrow buttons (named
Up and Down) and the sphere image (named Sphere). The scripts associated
with the two buttons broadcast a message to indicate that they have been
clicked, as shown in Figure 5-27.

Script for the
Down sprite

Script for the
Up sprite

Figure 5-27: Scripts for the Up and Down sprites

The Sphere sprite has nine costumes that represent spheres with diam-
eters 1, 1.25, 1.5, 1.75, ... , 3. When this sprite receives the Up or Down broad-
cast messages, it executes the scripts shown in Figure 5-28.

Figure 5-28: Scripts triggered by the Up and Down messages

Variables 113

The sprite switches its costume and then calls the Recalculate proce-
dure to update the volume and surface area calculations. Note that these
scripts use the value of the current costume to determine whether the
sphere has reached its highest or lowest size, thus ensuring valid responses
to the Up and Down buttons. I’ll say more about the if block in the next
chapter, but for now, let’s discuss the sphere’s Recalculate procedure,
shown in Figure 5-29.

Figure 5-29: Recalculate procedure

First, the value of the diameter variable is set according to this formula:

diameter = 1 + 0.25 × (costume number – 1)

Since the costume number ranges from 1 to 9, the corresponding val-
ues of the diameter variable will be 1, 1.25, 1.50, ... , 2.75, 3, which is what we
intended.

The script finds the radius, r, by dividing the diameter by 2. It then cal-
culates the volume and the surface area of the sphere using the formulas
shown in Figure 5-26. The computed values will show up automatically on
the corresponding monitors on the Stage.

t ry i t ou t 5-5

Open the application and run it . Study the scripts to understand how the applica-
tion works . Add a script to the Sphere sprite so it rotates and changes color as the
application runs . As another exercise, modify the original program to use a single
costume for the Sphere sprite and use the change size by block to change the
sphere’s size . The scaled image won’t look as nice, but otherwise, the application
should perform identically .

114 Chapter 5

Drawing an n-Leaved Rose
In this example, we’ll create an application that draws a rose with multiple
leaves on the Stage. The rose-drawing process can be broken down into the
following steps:

1. Start at the origin of the Stage.

2. Point the sprite in some direction. By convention, the Greek letter θ
(pronounced theta) represents an angle, so we’ll name the variable
for the sprite’s direction theta.

3. Move the sprite r steps and draw a single point on the Stage. After that,
lift the pen up and return to the origin.

4. Change the angle theta by some amount (we’ll use 1°) and repeat
steps 2–4.

The relation between the distance r and the angle theta is given by

r = a × cos(n × θ)

where a is a real number and n is an integer. This equation produces a rose
whose size and number of leaves are controlled by a and n, respectively. This
equation also involves the cosine trigonometric function (cos), which you’ll
find as a reporter block in the Operators palette (check the sqrt block). Given
the values of a and n, all we have to do is choose different values for theta,
calculate the corresponding values of r, and mark the resulting points on
the Stage. The user interface for this example is shown in Figure 5-30.

Figure 5-30: User interface for the n-leaved rose application

The application contains two sprites: The first sprite has the Redraw but-
ton costume, and the second sprite (called Painter) is a hidden sprite that
draws the rose. The user controls the number of desired leaves by chang-
ing n with the slider control and then clicks the Redraw button to draw the

N-LeavedRose .sb2

Variables 115

rose. When the user clicks that button, the button sprite simply broadcasts
a Redraw message. When the Painter sprite receives this message, it executes
the script shown in Figure 5-31.

Figure 5-31: The Redraw procedure for drawing an n-leaved rose on the Stage

The script first sets the pen’s color and size and clears the previous pen
marks from the Stage. It then sets the variable a to 100 and calls the Rose
procedure, which will run through a loop 360 times to draw the rose on
the Stage. On each pass of the loop, the procedure points in the direction
theta, moves r steps, and draws a pen mark at that location. It then incre-
ments theta by 1° to prepare for the next pass of the repeat loop.

Figure 5-32 shows some of the roses created for different values of n.
Can you figure out the relation between the value of n and the number of
leaves?

n = 3 n = 4 n = 5 n = 6

Figure 5-32: Some roses created by the Rose procedure

t ry i t ou t 5-6

Open the application and run it . Change the value of n to see what else you can
create with the Rose procedure . Add another slider to the application to allow
the user to change the value of a and modify the scripts as needed . You can also
modify the Rose procedure to take a as a parameter . (See “Passing Parameters
to Custom Blocks” on page 77 for a refresher on how to add parameters to
procedures .)

116 Chapter 5

Modeling Sunflower Seed Distribution
Biologists and mathematicians have studied the arrangement of leaves on
the stems of plants extensively. Let’s delve into botany a bit ourselves by
examining a geometric model for representing flowers with spiral seed pat-
terns. In particular, we’ll program two equations that model the distribu-
tion of seeds in a sunflower. To draw the nth seed of the sunflower, we’ll
follow these steps:

1. Point the sprite in the direction of n × 137.5°.

2. Move a distance r c n= , where c is a constant scaling factor (set to 5 in
our example).

3. Draw a point on the Stage at the final location.

We’ll repeat these steps for each seed we want to draw. For the first seed,
we set n = 1; for the second seed, we set n = 2; and so on. Using angles other
than 137.5° in the first step will result in different arrangements of seeds.
If you’re curious about these equations and want to learn more about sun-
flower seed patterns, check out The Algorithmic Beauty of Plants by Przemyslaw
Prusinkiewicz and Aristid Lindenmayer (Springer-Verlag, 2004), specifically
Chapter 4, which you’ll find on the book’s website, http://algorithmicbotany
.org/papers/#abop.

Our application will generate patterns similar to the ones described in
that work, and you can see some of those patterns in Figure 5-33.

Figure 5-33: Some sunflower patterns generated using different angles

The interface for this example contains a slider control to change the
value of the angle from 137° to 138° in increments of 0.01° and a button
labeled Redraw. When the user clicks that button, it broadcasts a message
to the Painter sprite, which executes the scripts shown in Figure 5-34.

The Sunflower procedure executes a loop that draws 420 seeds, though
you can change this number if you like. On every iteration of the loop, the
procedure goes to the location of the nth seed (by calculating the seed’s
angle u and moving n v steps) and draws a pen mark at that location.
The procedure then increments n, which represents the seed number, to
prepare to draw the next seed.

Sunflower .sb2

Variables 117

Figure 5-34: The scripts for the Painter sprite

The scripts I’ve presented in this section are just a few samples of
the amazing applications we can create by using variables and monitors.
Letting the user interact with our applications through the slider control is
just the start of a new breed of interactive applications. In the following sec-
tion, you’ll learn to create scripts that directly prompt users for input.

getting input from users
Imagine that you want to create a game that tutors children in basic arith-
metic. Your game would probably have a sprite that displays an addition
problem and asks the player to enter an answer. How would you read the
player’s input to see whether the answer was correct?

Scratch’s Sensing palette provides one command block, ask and wait,
that you can use to read user input. This block takes a single parameter that
specifies a string to show to the user, usually in the form of a question. As
illustrated in Figure 5-35, the execution of this block produces slightly differ-
ent outputs depending on the visibility state of the sprite (that is, whether
the sprite is shown or hidden). The output shown in Figure 5-35 (right)
also appears when the ask and wait command is called from a script that
is owned by the Stage.

GettingUserInput .sb2

t ry i t ou t 5-7

Open the application and run it . Change the value of the angle to see what else
you can create with the Sunflower procedure . Study the procedure to under-
stand how it works and then come up with some ways to enhance it .

118 Chapter 5

Result of the ask and wait
command when the sprite
is visible

Result of the ask and wait
command when the sprite
is hidden

Figure 5-35: The ask and wait block may produce different outputs depending
on whether the sprite that executes it is shown or hidden .

After executing the ask and wait command, the calling script waits
for the user to press the enter key or click the check mark at the right side
of the input box. When this happens, Scratch stores the user’s input in the
answer block and continues execution at the command immediately after
the ask and wait block. To see this command block in action, take a look
at the following examples illustrating how to use it.

Reading a Number
The script of Figure 5-36 asks the user for her age, waits for an answer, and
tells the user how old she will be in 10 years.

Figure 5-36: A script that accepts the user’s age as input

The figure shows the output of the program when the user types 18 and
presses enter on the keyboard. Notice that the program uses the join block
(from the Operators palette) to concatenate (that is, connect) two strings.

Reading Characters
The script of Figure 5-37 asks the user for his initials and then constructs
and displays a greeting based on the user’s response.

AskAndWait
 .sb2

AskAndWait2
 .sb2

Variables 119

Figure 5-37: A script that uses two variables to read in and
store the user’s initials

The program uses two variables (firstInitial and lastInitial) to save the
 values entered by the user. You can see the final output of the program
when the user enters the letters M and S at the two prompts, respectively.
Notice that the program uses nested join blocks to construct the greeting.
You can use this technique to create all sorts of strings and display custom-
ized messages in your applications.

Performing Arithmetic Operations
The script of Figure 5-38 asks the user to input two numbers. It then com-
putes the product of these two numbers and shows the answer in a voice
bubble using the say command. As in the previous example, the script uses
two variables (num1 and num2) to store the values entered by the user.

Figure 5-38: Computing a value based on user input

The figure shows the output when the user enters 9 and 8, respectively,
in response to the two prompts. Again, notice that I’ve nested the join blocks
to construct the output string.

The examples I’ve presented in this section demonstrate several ways
to use the ask and wait block to write scripts that take in user input and
solve a variety of problems. You can, for example, write a program to find
the roots of a quadratic equation of the form ax2 + bx + c = 0 for any values
of a, b, and c entered by the user. You could then use this program to check
your own answer to the equation. I hope this will give you some ideas of
how to use this powerful block to solve any math problem that may arise.

AskAndWait3
 .sb2

120 Chapter 5

Summary
Variables are one of the most important concepts in programming. A vari-
able is the name of an area in computer memory where we can store a
single value, such as a number or a string.

In this chapter, you learned the basic data types supported in Scratch
and the operations permitted on these types. You then learned how to cre-
ate variables and use them to store a piece of data.

You also implemented several practical applications that used variables
to demonstrate different features. You explored variables’ monitors and
used them to create different kinds of interactive programs. Finally, you
learned how to use the ask and wait block to prompt the user for some
input and process the user’s responses in your program.

In the next chapter, you'll learn more about the Boolean data type and
the fundamental role it plays in decision making. You’ll also learn about the
if and the if/else blocks and use them to add another level of intelligence
to your Scratch programs. So roll up your sleeves and get ready for another
exciting chapter!

Problems
1. Create a script that implements the following instructions:

•	 Set the speed variable to 60 (mph).

•	 Set the time variable to 2.5 (hours).

•	 Calculate the distance traveled and save the answer in the distance
variable.

•	 Display the calculated distance, with an appropriate message, to
the user

2. What is the output of each of the scripts shown below? Reproduce these
scripts and run them to test your answer.

Variables 121

3. What are the values of X and Y at the
end of each iteration of the repeat loop
in the script to the right? Reproduce the
script and run it to check your answer.

4. Let x and y be two variables. Create func-
tion blocks equivalent to the following
statements:

•	 Add 5 to x and store the result in y.

•	 Multiply x by 3 and store the result in y.

•	 Divide x by 10 and store the result in y.

•	 Subtract 4 from x and store the result in y.

•	 Square x, add y to the result, and store the result back in x.

•	 Set x equal to twice the value of y plus three times the cube of y.

•	 Set x equal to minus the square of y.

•	 Set x equal to the result of dividing the sum of x and y by the prod-
uct of x and y.

5. Write a program that asks that user to enter an article, a noun, and
a verb. The program then creates a sentence of the form article
noun verb.

6. Write a program that asks the user to enter a temperature in degrees
Celsius. The program will convert the temperature to degrees Fahr-
enheit and display the result to the user with an appropriate message.
(Hint: F° = (1.8 × C°) + 32.)

7. When a current I flows through a resistance R, the power P dissipated
by the resistance is I 2 × R. Write a program that reads I and R and cal-
culates P.

8. Write a program that reads the lengths of the two sides of a right tri-
angle and calculates the length of the hypotenuse.

9. Write a program that prompts the user to enter the length (L), width
(W), and height (H) of a box. The program will then compute and dis-
play the volume and surface area of the box. (Hint: Volume = L × W × H;
Surface area = 2×[(L × W) + (L × H) + (H × W)].)

10. The equivalent resistance R of three resistors (R1, R2, and R3) con-
nected in parallel is given by this equation:

1/R = 1/R1 + 1/R2 + 1/R3

Write a program that reads the values of R1, R2, and R3 and
calculates R.

122 Chapter 5

11. Complete the Whac-a-Mole game introduced earlier in the chapter.
The file Whac-a-Mole.sb2 contains a partial implementation of this pro-
gram. When the green flag is clicked, the provided script starts a loop
that moves the Cat sprite randomly over the holes. Add two scripts (one
for the Cat and the other for the Stage) to change the values of the two
variables (hits and misses) appropriately. Try adding some sound effects
to make the game more fun! You could also add a condition that ends
the game after a timer or the number of misses reaches a certain value.

Whac-a-Mole .sb2

6
m a k i n g D e c i S i o n S

This chapter will teach you the Scratch tools you need
to write programs that can compare values, evaluate
logical expressions, and make decisions based on the
results. We’ll also go through several useful example
applications. Here’s what you’ll learn along the way:

•	 Basic problem-solving techniques

•	 How to use the if and if/else blocks to choose among alternative
actions

•	 How to construct logical expressions to evaluate given conditions

•	 The flow of control in branching statements

The programs we have written so far follow a simple execution model.
They start with the first instruction, execute it, move on to the next instruc-
tion, and so on until they reach the end of the program. The command
blocks of these programs are executed in sequence, without any skipping
or jumping.

124 Chapter 6

In many programming situations, however, you may want to alter this
sequential flow of program execution. If you were writing an application to
tutor children in basic arithmetic, you’d want to execute certain blocks to
reward correct answers and a completely different set of blocks for wrong
answers (to reveal the right answer or offer another chance, for example).
Your script can decide what to do next by comparing the student’s input
with the correct answer. This is the basis of all decision-making tasks.

In this chapter, we’ll explore the decision-making commands available
in Scratch and write several programs that use these commands to test
inputs and perform different actions.

First, I’ll introduce you to Scratch’s comparison operators and show
how you can use them to compare numbers, letters, and strings. Then, I’ll
introduce the if and if/else blocks and explain their key role in decision
making. You’ll also learn how to test multiple conditions using nested if and
if/else blocks and write a menu-driven program to put these blocks into
action. After that, I’ll introduce logical operators as an alternative way to
test multiple conditions. In the last section, we’ll write several interesting
programs based on all of the concepts you’ve learned so far.

comparison operators
You make decisions every day, and each decision normally leads you to per-
form certain actions. You may think, for example, “If that car is less than
$2,000, I’ll buy it.” You then ask about the car’s price and decide whether
or not you want to buy it.

You can make decisions in Scratch, too. Using comparison operators,
you can compare the values of two variables or expressions to determine
whether one is greater than, less than, or equal to the other. Comparison
operators are also called relational operators because they test the relation-
ship between two values. The three relational operators supported in
Scratch are shown in Table 6-1.

Table 6-1: Relational Operators in Scratch

Operator Meaning Example

greater than

Is price greater than 2,000?

less than

Is price less than 2,000?

equal to

Is price equal to 2,000?

Making Decisions 125

Note that the blocks in Table 6-1 all have a hexagonal shape. As you
might recall from Chapter 5, that means the result of evaluating one of
these blocks is a Boolean value, which can be either true or false. For this
reason, these expressions are also called Boolean expressions.

For example, the expression price < 2000 tests whether the value of the
variable price is less than 2,000. If price is less than 2,000, the block returns
(or evaluates to) true; otherwise, it returns false. You can use this expres-
sion to construct your decision condition in the form, “If (price < 2000),
then buy the car.”

Before we look at the if block, which allows you to implement such a
test, let’s go over a simple example that illustrates how Boolean expressions
are evaluated in Scratch.

Evaluating Boolean Expressions
Let’s say that we set two variables, x and y, as follows: x = 5, and y = 10.
Table 6-2 shows some examples that use Scratch’s relational blocks.

These examples reveal several important points about relational opera-
tors. First, we can use them to compare both individual variables (such as
x, y) and complete expressions (such as 2 * x and x + 6). Second, the result
of a comparison is always true or false (that is, a Boolean value). Third, the
x = y block doesn’t mean “Set x equal to y.” Instead, it asks, “Is x equal to y?”
So when the statement set z to (x = y) is executed, the value of x is still 5.

BooL e a nS in t he r e a L wor L D

The word Boolean is used in honor of George Boole, a 19th-century British
mathematician who invented a system of logic based on just two values:
1 and 0 (or True and False) . Boolean algebra eventually became the basis
for modern-day computer science .

In real life, we use Boolean expressions all the time to make decisions .
Computers also use them to determine which branch of a program to fol-
low . A robotic arm may be programmed to inspect moving parts on an
assem bly line and move each part to Bin 1 if goodQuality = true, or Bin 2 if
goodQuality = false . Home security systems are usually programmed to sound
an alarm if the wrong code is entered (correctCode = false) or deactivate when
we enter the correct code (correctCode = true) . A remote server may grant
or deny access when you swipe your credit card at a department store based
on whether your card was valid (true) or invalid (false) . One computer in your
vehicle will automatically deploy the air airbags when it decides that a collision
has occurred (collision = true) . Your cell phone may display a warning icon
when the battery is low (batteryLow = true) and remove the icon when the bat-
tery’s charge is acceptable (batteryLow = false) .

These are just few examples of how computers cause different actions to
be taken by checking the results of Boolean conditions .

126 Chapter 6

Table 6-2: Sample Relational Block Uses

Statement Meaning z (output) Explanation

z = is(5 < 10)? z = true because 5 is less
than 10

z = is(5 > 10)? z = false because 5 is not
more than 10

z = is(5 = 10)? z = false because 5 is not
equal to 10

z = is(10 > 2*5)? z = false because 10 is
not more than 10

z = is(5 = 5)? z = true because 5
is equal to 5

z = is(10 < 5 + 6)? z = true because 10
is less than 11

Comparing Letters and Strings
Let’s think about a game in which the player tries to guess a one-letter
secret code between A and Z. The game reads the player’s guess, com-
pares it with the secret code, and instructs the player to refine his guess
based on the alphabetical order of letters. If the secret letter were G, for
example, and the player entered a B, the game should say something like
“After B” to tell the player that the secret code comes after the letter B in
the alphabet. How can you compare the correct letter with the player’s
input to decide what message to display?

Fortunately, the relational operators in Scratch can also compare let-
ters. As illustrated in Figure 6-1, Scratch compares letters based on their
alphabetical order. Since the letter A comes before the letter B in the alpha-
bet, the expression A < B returns true. It is important to note, however, that
these comparisons are not case sensitive; capital letter A is the same as small
letter a. Thus, the expression A = a also returns true.

Figure 6-1: Using relational operators to compare letters

Making Decisions 127

Knowing this information, you can test the player’s guess using the fol-
lowing set of conditionals:

IF (answer = secretCode), then say Correct
IF (answer > secretCode), then say Before <answer>
IF (answer < secretCode), then say After <answer>

A conditional is a statement of the form, “If the condition is true, then
take this action.” In the next section, I’ll teach you how to implement con-
ditionals in Scratch, but let’s explore relational operators a bit further with
our code-guessing game first.

What if the secret code contains more than one letter? For example, the
player might need to guess the name of an animal. Can you still use Scratch’s
relational operators to do the comparison? Luckily, the short answer is yes:
You can use Scratch’s relational operators to compare strings. But how does
Scratch process a comparison like elephant > mouse? The examples in
Figure 6-2 illustrate the result of comparing strings.

Figure 6-2: Using relational operators to compare u identical strings, v strings
that differ only in case, w one string to another that contains extra spaces, and
x strings that vary according to the dictionary order of their letters

A careful study of Figure 6-2 shows the following:

•	 Scratch compares strings irrespective of their case. The strings
“HELLO” and “hello” in v, for example, are considered equal.

•	 Scratch counts white spaces in its comparison. The string “ HELLO ”,
which starts and ends with a single space, is not the same as the string
“HELLO” w.

•	 When comparing the strings “ABC” and “ABD”, as in x, Scratch first
considers the first character in the two strings. Since they are the same
(the letter A in this case), Scratch examines the second character in
both strings. Since this character is also the same in the two strings,
Scratch moves on to examining the third character. Since the letter
C is less than the letter D (that is, C comes before D in the alphabet),
Scratch considers the first string to be less than the second string.

128 Chapter 6

Knowing this, it shouldn’t surprise you when the expression elephant >
mouse evaluates to false, even though actual elephants are much larger than
mice. According to Scratch’s string comparison rules, the string “ elephant”
is less than the string “mouse” because the letter e (the first letter in elephant)
comes before the letter m (the first letter in mouse) in the alphabet.

Comparing and sorting strings based on the alphabetical order of their
characters is used in many real-life situations, including ordering directory
listings, books on bookshelves, words in dictionaries, and so on. The word
elephant comes before the word mouse in the dictionary, and string compari-
son in Scratch gives an answer based on this order.

Now that you understand what relational operators are and how Scratch
uses these operators to compare numbers and strings, it’s time to learn about
conditional blocks.

decision Structures
Scratch’s Control palette contains two blocks that allow you to make deci-
sions and control actions in your programs: the if block and the if/else
block. Using these blocks, you can ask a question and take a course of
action based on the answer. In this section, we’ll discuss these two blocks
in detail, talk about flags, and learn to test multiple conditions with nested
if blocks. I’ll then introduce menu-driven applications and explain how
nested if blocks can aid in their implementation.

The if Block
The if block is a decision structure that gives you the ability to specify
whether a set of commands should (or should not) be executed based on
the result of a test condition. The structure of the if block and its corre-
sponding flowchart are shown in Figure 6-3.

Condition=trueif

Command 1

Command 2
...

Command N

Command M

No

Yes Execute commands
1... N

Is test
condition

true?

Execute Command M

Figure 6-3: Structure of the if block

In Figure 6-3, the diamond shape represents a decision block that gives
a yes/no (or true/false) answer to a question. If the test condition in the
header of the if block is true, the program executes the commands listed
inside the body before moving on to the command that follows the if block
(Command M in the figure). If the test condition is false, the program skips
those commands and moves directly to Command M.

Making Decisions 129

To see the if block in action, create the script shown in Figure 6-4 and
run it. The script runs a forever loop that moves a sprite around the stage,
changes its color, and makes it bounce off the edges of the Stage.

0 240–240

x position > 0 x position < 0

Sprite changes
color in this half

Figure 6-4: This script causes the sprite to change its color only when it is
moving in the right half of the Stage .

The forever loop in our script contains an if block that checks the
sprite’s x -position after every move command. If the x -position is greater
than zero, the sprite should change its color. When you run this script,
you’ll notice that the sprite changes its color only when it is moving in the
right half of the Stage. This is because the change color effect by 25 block
is executed only when the x position > 0 condition is true.

Using Variables as Flags
Let’s say that you are developing a space adventure game where the goal
is to destroy a fleet of attacking warships. The player, who is the captain,
maneuvers a starship with the arrow keys on the keyboard and fires mis-
siles by pressing the spacebar. If the player’s starship gets hit by enemy fire
a certain number of times, the ship loses its ability to attack. At this point,
pressing the spacebar should not fire any more missiles, and the captain has
to adopt a defense strategy to avoid taking any more hits. Clearly, when the
spacebar is pressed, your program needs to check the state of the starship’s
attack system to decide whether or not the player can fire.

Checks of this nature are normally performed using flags, which are
variables you use to indicate whether or not an event of interest has hap-
pened. You could use any two values to describe the event’s status, but
it’s common practice to use 0 (or false) to indicate that the event hasn’t
occurred and 1 (or true) to indicate that it has.

In your space shooter game, you can use a
flag named canFire to indicate the state of the
starship. A value of 1 means that the starship can
fire missiles, and a value of 0 means that it can’t.
Based on this, your spacebar event handler may
be coded as shown in Figure 6-5.

At the start of the game, you’d initialize the
value of the canFire flag to 1 to indicate that the

Commands to fire a missile

Figure 6-5: Using a flag
for condition execution

130 Chapter 6

starship is capable of firing missiles. When the starship gets hit by a certain
amount of enemy fire, you’d set the canFire flag to 0 to indicate that the
attack system has become dysfunctional; at that point, pressing the space-
bar won’t fire any more missiles.

Although you can name your flags anything you want, I recommend
using names that reflect their true/false nature. Table 6-3 shows some
examples of flags you might use in the space shooter game.

Table 6-3: Some Examples of Using Flags

Example Meaning and Possible Course of Action

Game has not started yet . Ignore all keyboard inputs .

Game has started . Start processing user input .

Game is not over yet . Show remaining time .

Game is over . Hide the remaining time display .

The starship is not hit by enemy’s fire . Alarm sound is off .

The starship has been hit by a missile . Play the alarm sound .

Now that you know how to use the if block and flags, let’s talk about
another conditional block, one that will let you execute one block of code
when a certain condition is true and another if that condition is false.

The if/else Block
Imagine that you are creating a game to teach basic math to elementary stu-
dents. The game presents an addition problem and then asks the student to
enter an answer. The student should receive one point for a correct answer
and lose one point for an incorrect answer. You can perform this task using
two if statements:

If the answer is correct, add one point to score
If the answer is incorrect, subtract one point from score

You could also simplify this logic—and make the code more efficient—
by combining the two if statements into one if/else statement as follows:

If the answer is correct
 add one point to score
Else
 subtract one point from score

Making Decisions 131

The specified condition is tested. If the condition is true, the com-
mands in the if part of the block are executed. If the condition is false,
however, the commands under else will execute instead. The program
will only execute one of the two groups of commands in the if/else block.
Those alternative paths through the program are also called branches. The
structure of the if/else block and its corresponding flowchart are shown in
Figure 6-6.

if

else

Condition=true

Command 1

Command 2
...

Command N

Command 1

Command 2

...

Command M

Next Command

Is test
condition

true?

Execute
commands in
the if group

Execute
commands in

 the else group

YesNo

if group

else group

Next command

then

Figure 6-6: Structure of the if/else block

You might use the if/else structure when you want to decide where to
eat lunch. If you have enough money, you’ll go to a fancy restaurant; other-
wise, you’ll settle for more casual food. Let’s call the money in your wallet
availableCash. When you open your wallet, you’re checking the condition
availableCash > $20. If the result is true (you have more than $20), you’ll
go to a place with white tablecloths, and if not, you’ll head to the nearest
burger joint.

One simple script that illustrates using the if/else block is shown in
Figure 6-7. This example uses the modulus operator (mod), which returns the
remainder of a division operation, to determine whether a number entered
by the user is even or odd. (Remember that an even number has a remain-
der of zero when divided by two.)

Figure 6-7: This script finds out whether the number the
user entered is even or odd .

132 Chapter 6

Figure 6-7 shows two sample outputs for when the user enters 6 and 9,
respectively, in response to the ask command. Can you explain how this
script works?

Nested if and if/else Blocks
If you want to test more than one condition before taking an action, you
can nest multiple if (or if/else) blocks inside each other to perform the
required test. Consider for example the script shown in Figure 6-8, which
determines whether a student should receive a scholarship. To qualify, the
student must have: (1) a grade point average (GPA) higher than 3.8 and (2)
a grade above 92 percent in math.

say
“Sorry! Low

GPA.”

YesNo

say
“Sorry! Low
math score.”

say
“Congratulations!”

No Yes

gpa
> 3.8?

mathScore
> 92?

Figure 6-8: You can use nested if/else blocks to test multiple conditions .

First, the expression gpa > 3.8 is tested. If this expression is false, we
don’t need to check the other condition because the student doesn’t meet
the scholarship criteria. If the expression gpa > 3.8 is true, however, we
need to test the second condition. This is done with the nested if/else block,
which tests the condition mathScore > 92. If this second condition is also
true, the student gets the scholarship. Otherwise, the student does not qual-
ify, and an appropriate message explaining the reason is displayed.

Menu-Driven Programs
Next, we’ll explore a typical use of nested if blocks. In particular, you’ll
learn how to write programs that present the user with choices and act on
the user’s selection.

When you start up some programs, they display a list (or menu) of avail-
able options and wait for you to make a selection. Sometimes, you’ll interact
with these programs by entering a number that corresponds to your desired
option. Such programs may use a sequence of nested if/else blocks to deter-
mine the user’s selection and act appropriately. To see how nested if/else
blocks work, we’ll discuss an application, shown in Figure 6-9, that calcu-
lates the area of different geometric shapes.

AreaCalculator
 .sb2

Making Decisions 133

The background
of the Stage

The only sprite in
the application
(named Tutor)

Figure 6-9: User interface for the area calculator program

The user interface for this application contains the Stage’s background
image, which shows the available options (the numbers 1, 2, or 3), and the
Tutor sprite, which asks the user for a choice, performs the calculation, and
displays the result. The main script, shown in Figure 6-10, starts when the
green flag icon is clicked.

If the user entered 1, call
Rectangle and, when it
returns, move to the end.

If the user entered 2, call
Triangle and, when it
returns, move to the end.

If the user entered 3,
call Circle and, when it
returns, move to the end.
Else, say “Invalid
choice!” and then
move to the end.

Figure 6-10: The main script of the Tutor sprite

After asking the user to enter a choice, the Tutor sprite waits for the
user’s input and uses three if/else blocks to process it. If the user entered
a valid choice (that is, 1, 2, or 3), the script calls the appropriate procedure
to calculate the area of the indicated shape. Otherwise, the script invokes
the say command to inform the user that the choice entered is invalid.
The procedures for calculating the areas of the three shapes are shown
in Figure 6-11.

134 Chapter 6

Figure 6-11: Procedures for the area calculator program

Each procedure asks the user to enter the dimensions for its corre-
sponding shape, calculates the area, and displays the result. For example,
the Rectangle procedure asks the user to enter the length and width of the
rectangle and saves the answers in the length and width variables, respec-
tively. It then computes the area by multiplying the length by the width
and displays the answer. The other two procedures work similarly.

Logical operators
In the previous section, you learned how to use nested if and if/else blocks
to test multiple conditions, but you can also do that with logical operators.
Using logical operators, you can combine two or more relational expres-
sions to produce a single true/false result. For example, the logical expres-
sion (x > 5) and (x < 10) is made up of two logical expressions (x > 5 and
x < 10) that are combined using the logical operator and. We can think
of x > 5 and x < 10 as the two operands of the and operator; the result of
this operator is true only if both operands are true. Table 6-4 lists the three
logical operators available in Scratch with a brief explanation of their
meaning.

Table 6-4: Logical Operators

Operator Meaning

The result is true only if the two expressions are true .

The result is true if either of the two expressions is true .

The result is true if the expression is false .

Now that you’ve seen a brief overview of each operator, let’s explore
how they work in more detail, one at a time.

Making Decisions 135

The and Operator
The and operator takes two expressions as parameters. If both expressions
are true, the and operator returns true; otherwise, it returns false. The
truth table for and, which lists the output of the operator for all possible
combinations of inputs, is shown in Table 6-5.

Table 6-5: Truth Table for the and Operator

X Y

true true true

true false false

false true false

false false false

As an example of using the and operator, let’s say we’re creating a game in
which the player gets 200 bonus points when the score reaches 100 in the
first level. The game level is tracked by a variable named level, and the score
is tracked using a variable named score. Figure 6-12 shows how these condi-
tions can be tested using nested if blocks u or with the and operator v.

Figure 6-12: Checking multiple conditions using nested if blocks and the and operator

In both cases, the bonus points are added only when both condi-
tions are true. As you can see, the and operator provides a more concise
way for performing the same test. The command(s) inside the if block in
Figure 6-12 v will be executed only if level equals 1 and score equals 100. If
either condition is false, the entire test evaluates to false, and the change
score by 200 block will not be executed.

The or Operator
The or operator also takes two expressions as parameters. If either expres-
sion is true, the or operator returns true. It returns false only when the two
expressions are both false. The truth table for the or operator is given in
Table 6-6.

136 Chapter 6

Table 6-6: Truth Table for the or Operator

X Y

true true true

true false true

false true true

false false false

To demonstrate the use of the or operator, let’s assume that players of a
certain game have a limited time to reach the next level. They also start with
a given amount of energy that depletes as they navigate the current level.
The game ends if the player fails to reach the next level in the allowable
time or if the player depletes all the allotted energy before reaching the
next level. The remaining time is tracked by a variable named timeLeft, and
the player’s current energy level is tracked by a variable named energyLevel.
Figure 6-13 shows how the game end condition can be tested using nested
if/else blocks u and the or operator v.

Figure 6-13: Checking multiple conditions using nested if blocks and with the or operator

Note again that the or operator provides a more concise way to test
multiple conditions. The command(s) inside the if block in Figure 6-13 v
will be executed if timeLeft or energyLevel is 0. If both of these two condi-
tions are false, the entire test evaluates to false, and the gameOver flag will
not be set to 1.

The not Operator
The not operator takes only one expression as input. The result of the
 operator is true if the expression is false and false if the expression is true.
The truth table for this operator is given in Table 6-7.

Table 6-7: Truth Table for the not Operator

X

true false

false true

Making Decisions 137

Going back to our hypothetical game from earlier, let’s say the player
can’t progress to the next level if the score isn’t more than 100 points. This
would be a good place to use the not operator, as shown in Figure 6-14.
You can read this block of code as, “If score is not greater than 100, do the
command(s) inside the if block.”

Figure 6-14: Example of using the
not operator

In effect, if the value of the score variable is 100 or lower, the test
expression evaluates to true, and the say command will execute. Note
that the expression not (score > 100) is equivalent to (score ≤ 100).

Using Logical Operators to Check Numeric Ranges
When you need to validate data entered by a user or filter out bad inputs,
you can use logical operators to determine whether a number is inside (or
outside) a numeric range. Table 6-8 shows some examples of numerical
ranges.

Table 6-8: Expressing Numerical Ranges

Expression Value
(x > 10) and (x < 20) Evaluates to true if the value of x is greater than 10

and less than 20 .
(x < 10) or (x > 20) Evaluates to true if the value of x is less than 10 or

greater than 20 .
(x < 10) and (x > 20) Always false . x can't be both less than 10 and

greater than 20 .

Although Scratch does not have built-in support for ≥ (greater than or
equal to) and ≤ (less than or equal to) operators, you can use logical opera-
tors to implement these tests. Let’s say, for example, that you need to test
the condition x ≥ 10 in your program. The solution set for this inequality is
shown in Figure 6-15 u. The filled circle in the figure means that the num-
ber 10 is included in the solution set.

One way to test this condition is shown in Figure 6-15 v. The figure
shows the solution set for x < 10, where the nonfilled circle means that the
corresponding point is not in the solution set. As you can see from the fig-
ure, the complementary solution (that is, “x is not less than 10”) is equivalent
to x ≥ 10. Another way to perform the inequality test is shown in Figure 6-15
w. Clearly, if x ≥ 10, then either x is greater than 10 or x is equal to 10.

138 Chapter 6

8 9 10 11 12 13

8 9 10 11 12 13

8 9 10 11 12 13

x > 10 or x = 10

8 9 10 11 12 13

x ≥10

8 9 10 11 12 13

8 9 10 11 12 13

x <10

x is not <10

x >10

x = 10

Figure 6-15: Two ways to implement the inequality x ≥ 10

The examples provided in Table 6-9 demonstrate how to use Scratch’s
relational and logical operators to express inequalities that contain the ≥
and the ≤ operators.

Table 6-9: Examples of Testing Inequalities

Expression Implementation Using Logical Operators

x ≥ 10

x ≥ 10

x ≤ 10

x ≤ 10

10 ≤ x ≤20

10 ≤ x ≤20

We’ve explored several Scratch concepts in this chapter so far, includ-
ing comparisons, conditional statements, and logical operators. Now, let’s
use that knowledge to create some fun and useful applications.

Making Decisions 139

comPa r ing Decim a L numBe rS

Special care must be taken when using the equal operator to compare decimal
numbers . Because of the way these numbers are stored inside the computer,
the comparison may sometimes be imprecise . Consider the command blocks
shown here:

The result of dividing 1 by 3 is 0 .3333… with the sequence of 3s repeat-
ing forever . Since the computer uses a fixed amount of space to store the result,
the fraction 1/3 cannot be exactly stored by the computer . Although Scratch
tells you that the result of the division is 0 .33 at u, the actual result is saved
internally with much higher precision . Therefore, the results of the first two com-
parisons in the figure (v and w) evaluate to false .

Depending on your programming situation, you may be able to prevent
this type of error by using one of the following approaches:

•	 Use the less than (<) and greater than (>) operators instead of the equals
operator (=) when possible .

•	 Use the round block to round the two numbers you need to compare, and
then compare the rounded numbers for equality .

•	 Test the absolute difference between the two values you are comparing . For
 example, instead of testing if x equals y, we can check to see if the absolute
difference between x and y is within an acceptable tolerance by using a
block similar to this one:

Depending on the accuracy of the numbers and the method of calcu-
lating these numbers, this method may be sufficient for your purpose .

140 Chapter 6

Scratch Projects
The new commands you’ve learned in this chapter should allow you to cre-
ate a wide range of useful Scratch applications, and hopefully the projects
I present in this section will give you some ideas for your own projects. I
encourage you try out these applications, understand how they work, and
then think of ways to enhance them.

Guess My Coordinates
In this section, we’ll develop an interactive game that can be used to test
anyone’s knowledge of the Cartesian coordinate system. The game contains
a single sprite (called Star) that represents a random point on the Stage
(see Figure 6-16).

Figure 6-16: The Guess My Coordinates interface

Each time you run the game, the sprite moves to a different location
on the Stage and asks the user to guess its x - and y -coordinates. The game
checks the user’s answers and provides an appropriate feedback message.
The main script for the Star sprite is shown in Figure 6-17.

This script uses two variables, X and Y, to hold the random coordinates
of the sprite. I’ll explain how each numbered section from Figure 6-17 works
below.

1. The X variable is assigned a random value from the set {–220, –200,
–180, ... , 220}. This is achieved by first selecting a random inte-
ger between –11 and 11 and multiplying the result by 20. Similarly,
the Y variable is assigned a random value from the set {–160, –140,
–120, ... , 160}. The selected X and Y values ensure that the resulting
point is located on one of the grid intersection points of Figure 6-16.
The sprite is then moved to the location specified by X and Y.

GuessMy
Coordinates .sb2

Making Decisions 141

Figure 6-17: Script for the Guess My Coordinates game

2. The script asks the user to enter the x -coordinate of the sprite and waits
for an answer.

3. If the answer is correct, the script moves to step 4. Otherwise, it will call
the ShowAnswer procedure to display the correct coordinates of the
point.

4. When the user enters the correct value for the x -coordinate, the script
prompts the user to enter the y -coordinate of the sprite and waits for an
answer.

5. If the user answers correctly, the script displays the message “Good Job.”
Otherwise, it calls ShowAnswer to display the correct coordinates.

The ShowAnswer procedure is shown in Figure 6-18. The point variable
is first constructed to have a string of the form (X,Y) using the join operator.
The procedure then uses the say command to show the correct answer to
the user.

Figure 6-18: The ShowAnswer procedure

142 Chapter 6

Triangle Classification Game
As Figure 6-19 illustrates, a triangle can be classified as scalene, isosceles, or
equilateral based on the lengths of its sides. In this section, you’ll explore a
game that quizzes players on these concepts.

Scalene Isosceles Equilateral

No sides are congruent. At least two sides are congruent. All sides are congruent.

Figure 6-19: Classifying a triangle based on its sides

The game draws a triangle on the Stage and asks the player to classify
that triangle as one of the three types. The user interface for this game is
illustrated in Figure 6-20.

Scalene sprite

Isosceles sprite

Equilateral sprite

Painter sprite (invisible)

Tutor sprite

Figure 6-20: User interface for the triangle classification game

Triangle
Classification .sb2

t ry i t ou t 6-1

Enhance this guessing game with some fun modifications . For example, you could
make the game play music when someone wins, trigger a buzz for a wrong answer,
run automatically (without having to press the green flag each time), or keep track
of the number of correct answers to display the player’s score .

Making Decisions 143

Figure 6-20 shows that this game contains five sprites. Three sprites
(named Scalene, Isosceles, and Equilateral) represent the buttons the user
clicks to select an answer, and the invisible Painter sprite draws the triangle
on the Stage.

n o t e I made the Painter sprite invisible by unchecking its Show checkbox in the sprite info
area. If you prefer to control the sprite’s visibility from the script, you can add a hide
block to explicitly hide the sprite when the game starts.

The Tutor sprite is the game’s main driver; it determines the type of tri-
angle to draw for each run and checks the user’s answer. The scripts for the
Tutor sprite are shown in Figure 6-21.

No answer yet.

Show a new
question, wait
for answer, and
then check the
answer.

Set triangle’s
name based
on its type.

Tell Painter
to draw the
triangle.

Set triangle’s type
(1 to 3) for this
question.

Figure 6-21: Scripts for the Tutor sprite . The main driver script (top left) calls
NewQuestion (right) and CheckAnswer (bottom left) .

When the green flag icon is clicked to start the game, the main script
enters an infinite loop. On each pass of the loop, the script sets choice to 0
(to indicate that the player hasn’t answered yet), draws a different triangle,
and waits for an answer. The choice variable should change when the user
clicks any of the three answer buttons. When the user clicks a button to
classify the triangle, the script checks the answer and provides appropriate
feedback. Let’s look at each step in more detail.

The NewQuestion procedure starts by randomly setting type—which
determines the type of the triangle to be drawn on the Stage—to 1, 2, or
3. The script then uses two if/else blocks to set the value of the name vari-
able based on the value of type. The name variable serves two purposes:
(1) it specifies which broadcast message to send so the Painter sprite knows
what to draw (note how the broadcast and wait block uses name), and

144 Chapter 6

(2) it is used in the CheckAnswer procedure to create the user’s feedback
message. When the Painter sprite finishes drawing, the NewQuestion pro-
cedure prompts the user for an answer with the say command.

When the Painter sprite receives the broadcast message, it draws the
corresponding triangle on the Stage. To make the game more exciting,
the Painter sprite uses random values for the triangle’s size, orientation,
and color, as shown in Figure 6-22.

Figure 6-22: Scripts for the Painter sprite

After asking the user to classify the drawn triangle, the main script uses
the wait until block (from the Control Palette) to pause until choice > 0
becomes true. The three button sprites will change choice when they are
clicked. The Scalene button sets choice to 1, the Isosceles button sets choice
to 2, and the Equilateral button sets choice to 3 (see Figure 6-23).

Script for the Scalene sprite Script for the Isosceles sprite Script for the Equilateral sprite

Figure 6-23: Scripts for the three button sprites

Making Decisions 145

When a button is pressed, its sprite moves a little bit down and to the
right to give the visual effect of a button press. When the mouse is released,
the sprite returns to its original position and sets the value of the variable
choice to indicate that the user clicked that button. Note that each sprite
sets choice to a different number. The blocks for moving the buttons in
these scripts are not strictly necessary and can be removed if desired.

Once the user chooses a triangle type, choice becomes greater than zero,
and the main script calls the CheckAnswer procedure. This procedure com-
pares the type variable (which specified the type of the drawn triangle) with
the value of the choice variable. If the two variables have the same value,
then the user’s answer was correct. Otherwise, the user’s answer was wrong,
and the script will say the correct classification.

t ry i t ou t 6-2

Open this game and play it a few times . Once you understand how it works, try
adding some extra functions . Here are a few ideas:

•	 Make the game keep score . It could add a point for each correct answer and
deduct a point for each incorrect answer .

•	 Give the user an option to quit the game .

•	 Define a criterion for ending the game . For example, you could set the main
repeat loop to run 20 times instead of forever . You could also stop the game
after five incorrect answers .

•	 Have something exciting happen while the game is running . For example,
you might create a variable named specialNumber and assign it a random
value at the start of the game . When the number of correct answers matches
specialNumber, the game could give the user bonus points, play music, or
even tell a joke .

•	 Bring the buttons to life with graphics effects . For example, if you add the
script shown below to each button, the buttons will change color when the
mouse hovers over them .

146 Chapter 6

Line Follower
Can we make a sprite follow (or trace) a path on the Stage, like the one
shown in Figure 6-24, all by itself? The answer is yes, and in this section,
we’ll write a program to do it. If you look closely at the sprite in the figure,
you’ll notice that we painted the nose and the two ears of the cat with dif-
ferent colors. The figure also shows an enlarged view of the cat’s head.

Left sensor
Middle sensor
Right sensor

Figure 6-24: Sample path for a sprite to follow

The plan is to use the cat’s nose and ears as color sensors for detecting
the black line underneath. Our algorithm for tracing the black line uses the
following heuristics (rules based primarily on logical reasoning and trial-
and-error experimentation):

•	 If the nose of the cat (pink color) is touching the line, move forward.

•	 If the left ear of the cat (yellow color) is touching the line, turn counter-
clockwise and move forward at a reduced speed.

•	 If the right ear of the cat (green color) is touching the line, turn clock-
wise and move forward at a reduced speed.

Of course, the exact speed (movement steps) and turning angles can
be different for different routes and have to be determined by experimenta-
tion. A script that implements the above algorithm and causes the sprite to
follow the line is shown in Figure 6-25.

The script in Figure 6-25 uses a new block: color is touching? (from
the Sensing palette). This block checks whether a color on the sprite (speci-
fied in the first color square) is touching another color (specified in the sec-
ond color square). If the specified color on the sprite is touching the other
color, the block returns true; otherwise, it returns false. The color in a color
square can be chosen by clicking on the color square and then clicking any-
where in the Scratch project to pick the desired color.

LineFollower .sb2

Making Decisions 147

The nose of the cat
is touching the line.

The left ear of the cat
is touching the line.

The right ear of the cat
is touching the line.

The cat is not touching
the line. Move slowly to
find a starting point.

Start from a point on
the line facing right.

Figure 6-25: Line-following algorithm

Equation of a Line
The equation of a line joining two points P = (x1, y1) and Q = (x2, y2) is
y = mx + b, where m = (y2 – y1) / (x2 – x1) is the slope of the line and b is the
y -intercept. A vertical line has an equation of the form x = k, and a hori-
zontal line has an equation of the form y = k, where k is a constant. In this
section, we’ll develop an application that finds the equation of the line that
joins two points in the Cartesian plane. The user interface for the applica-
tion is shown in Figure 6-26.

EquationOfALine
 .sb2

t ry i t ou t 6-3

Open the application and run it to see how it works . Experiment with the given
values to make the sprite finish the track in the fastest possible time . One reviewer
completed the track in 11 seconds . Can you beat the record? Create other tracks
and see if this simple algorithm still works .

148 Chapter 6

Point1 sprite

Drawer sprite
(invisible)

Point2 sprite

Tutor sprite

Figure 6-26: User interface for the equation-finder application

The user drags the two sprites representing the end points of the line
onto the Stage, and the application automatically displays the equation of
the resulting line. The application contains four sprites: Point1 and Point2
are used to mark the two end points of the line; Drawer is a hidden sprite
that draws a straight line between the two points; and Tutor is responsible
for computing and displaying the equation of the line.

The scripts for Point1 and Point2 are very similar. They contain some
logic (not shown here) that restricts the sprites’ locations to the intersec-
tion points of the grid. Essentially, when the user drags the Point1 sprite,
it updates the variables that hold its coordinates (named X1 and Y1) and
broadcasts Redraw. Similarly, when the user drags the Point2 sprite, it
updates the variables that hold its coordinates (named X2 and Y2) and
broadcasts the same message. All four variables (X1, X2, Y1, and Y2) can
only take integer values in the range –9 to 9. You can find the details of
these scripts in the file EquationOfALine.sb2. Let’s now take a look at the
scripts for the Drawer sprite, shown in Figure 6-27.

Figure 6-27: Scripts for the Drawer sprite

Making Decisions 149

When the game starts, this sprite sets its pen’s size and color and gets
ready to draw. When it receives the Redraw message, it moves to the Point1
sprite, clears the Stage, and then moves to the Point2 sprite. The result is a
straight line that connects Point1 and Point2.

The Tutor sprite also executes a script when it receives the Redraw mes-
sage, as shown in Figure 6-28.

Figure 6-28: Redraw message handler for the Tutor sprite

The script performs the following checks:

•	 If the coordinates of Point1 and Point2 are the same, there is no line to
process. The script simply says “Same point.”

•	 If the two points are different but their x -coordinates are the same,
then we have a vertical line. The script displays an equation of the form
x = constant.

•	 If the two points are different but their y -coordinates are the same,
then we have a horizontal line. The script displays an equation of the
form y = constant.

•	 Otherwise, the two points form a straight line whose equation has the
form y = mx + b. The script first calls the Compute procedure to find the
slope and the y -intercept of the line. Then it calls ShowEquation to put
the equation in a proper format and show it to the user.

The Compute procedure is shown in Figure 6-29. It computes the slope
(m) and the y -intercept (b) and then rounds these values to the nearest
hundredth.

150 Chapter 6

Round m and b to the nearest
hundredths.

slope,
−

=
−

2 1

2 1

y y
m

x x

= −1 1b y mxy-intercept,

Figure 6-29: The Compute procedure

The ShowEquation procedure is shown in Figure 6-30. It uses two
variables (term1 and term2) and two subprocedures to properly format
the equation for display.

Figure 6-30: The ShowEquation procedure

The ShowEquation procedure considers the following special cases
while formatting the line equation:

•	 If the slope is 1, term1 will be set to x (instead of 1x).

•	 If the slope is –1, term1 will be set to –x (instead of –1x).

•	 term2 is formed using the proper sign (plus or minus) of the y-intercept.

•	 If the y -intercept is 0, the equation will have the form y = mx.

Making Decisions 151

Other Applications
Now let’s discuss some games you’ll find in the extra resources for this book
(download the extra resources from http://nostarch.com/learnscratch/). The
supplementary material contains two classic games that you can explore on
your own. The first is a “guess my number” game. The application secretly
selects an integer at random between 1 and 100 and prompts the player to
guess that number. The application then tells the player whether the guess
was higher or lower than the secret number by displaying “too high” or “too
low,” respectively. The player has six chances to guess the secret number.
A correct guess wins the game; otherwise, it’s a loss.

The second game allows the user to play Rock, Paper, Scissors against
the computer. The player makes a selection by clicking one of three but-
tons that represent rock, paper, or scissors. The computer makes a random
selection. The winner is selected according to the following rules: Paper
beats (wraps) rock, rock beats (breaks) scissors, and scissors beat (cut)
paper.

Summary
In this chapter, you learned about the comparison operators in Scratch and
used them to compare numbers, characters, and strings. After that, you
learned about the if and if/else blocks and used them to make decisions
and control actions in several programs. You also learned how to use nested
if and if/else blocks for testing multiple conditions and applied this tech-
nique to develop a menu-driven application. You also learned about logical
operators as an alternative, and more concise, way to test multiple condi-
tions. Finally, you explored several complete applications that demonstrated
decision-making structures in action.

The next chapter will take you deeper into the Control palette, showing
you the various repetition structures available in Scratch and teaching you
how to use them to write even more powerful programs.

GuessMy
Number .sb2

RockPaper .sb2

t ry i t ou t 6- 4

Open the application and run it . Drag the two points to different locations on the
Stage and check the displayed equation . To enhance this application, try adding
a script to move Tutor sprite out of the way if it overlaps with the coordinates dis-
played by the Point1 and Point2 sprites .

152 Chapter 6

Problems
1. What is the value of W after executing each command in this script?

(a)

(b)

(c)

(d)

(e)

2. Express each of the following statements using an if block:

a. If x divided by y is 5, then set x to 100.

b. If x times y is 5, then set x to 1.

c. If x is less than y, then double the value of x.

d. If x is greater than y, then increment the value of x by 1.

3. Write a program that prompts the user to enter five test scores between
1 and 10. The program will then count the number of scores that are
greater than 7.

4. Express each of the following statements using an if/else block:

a. If x times y is 8, then set x to 1; otherwise, set x to 2.

b. If x is less than y, then double the value of x; otherwise, increment
x by 1.

c. If x is greater than y, then increment both by 1; otherwise, decre-
ment both by 1.

5. Trace through the script on the right for
each of the following cases to find the out-
put of each:

a. x = –1, y = –1, z = –1

b. x = 1, y = 1, z = 0

c. x = 1, y = –1, z = 1

d. x = 1, y = –1, z = –1

Making Decisions 153

6. Write a program that asks the user to enter three numbers. The pro-
gram will then determine and print the largest of the three numbers.

7. A company sells five different products whose retail prices are shown
in the following table. Write a program that asks the user to enter the
product number and the quantity sold. The program will then calculate
and display the total retail value.

Product Number Retail Price

1 $2 .95

2 $4 .99

3 $5 .49

4 $7 .80

5 $8 .85

8. Construct a logical expression to represent each of the following
conditions:

a. score is greater than 90 and less than 95.

b. answer is either y or yes.

c. answer is an even number between 1 and 10.

d. answer is an odd number between 1 and 10.

e. answer is between 1 and 5 but not equal to 4.

f. answer is between 1 and 100 and divisible by 3.

9. The triangle inequality theorem states that the sum of the lengths of any
two sides of a triangle is greater than the length of the third side. Write
a program that gets three numbers from the user and determines
whether they could represent the sides of a triangle.

10. The Pythagorean theorem states that if a and b are the lengths of the legs
of a right triangle and c is the length of the hypotenuse (the longest
side), then a2 + b2 = c2. Write a program that gets three numbers from
the user and determines whether they could represent the sides of a
right triangle.

7
r e P e t i t i o n : a D e e P e r

e x P L o r a t i o n o f L o o P S

You’ve seen some of Scratch’s repetition structures
before, but this chapter covers them in greater detail.
It’s time to discuss new blocks that create loops, nested
loops, and recursion. By the end of this chapter, we’ll
have explored the following programming concepts:

•	 Repetition structures to execute statements repeatedly

•	 How to validate user input

•	 Counter-controlled and event-controlled loops

•	 Procedures that can call themselves with recursion

Although most people find repetitive tasks boring, computers seem to
like nothing more. Repetition structures, better known as loops, are program-
ming commands that tell a computer to repeatedly execute a statement or
a sequence of statements. The simplest kind of loop is a definite loop, which
repeats a sequence of statements a specific number of times. These loops

156 Chapter 7

are also called counter-controlled loops or counted loops. Other types of loops
continue to repeat until some condition occurs; these are called condition-
controlled loops or indefinite loops. Another loop, called an infinite loop, repeats
forever.

In this chapter, you’ll learn about the different repetition structures
available in Scratch. I’ll explain both counter-controlled and condition-
controlled loops in detail, and I’ll introduce you to the stop block, which
you can use to end infinite loops. You’ll learn how to use loops to validate
user input, as well.

The chapter also discusses nested loops (loops that contain other loops)
and shows several examples of their use. We’ll also talk about recursion—a
procedure calling itself—as another way to achieve repetition. At last, we’ll
develop a number of interesting applications that use both loops and condi-
tionals, and we’ll look at incorporating loops into practical programs.

more Loop blocks in Scratch
As you learned in Chapter 2, loop blocks allow you to repeat a command
or a set of commands in a program. Scratch supports the three repetition
blocks shown in Figure 7-1.

Figure 7-1: Scratch’s repeat blocks

You’ve already used two of these blocks, the repeat and the forever
blocks, in many examples throughout this book. In this section, we’ll exam-
ine the third kind of loop block—the repeat until block—and explain
some of the technical terms associated with loops in general.

Each repetition of a loop is called an iteration, and the word count
is often used to describe the number of times a loop repeats. The repeat
block, which you are very familiar with, is a counter-controlled loop because
it repeats its commands a specific number of times. We usually use this loop
when we know the number of repetitions the loop will need to execute,
as when we want to draw a polygon with a known number of sides.

On the other hand, the repeat until block is a condition-controlled loop.
The statements inside this block are repeated based on the truth or falsity
of its test expression. We use this block when we don’t know in advance how
many times the loop will need to repeat and want the repetition to continue
until some condition is met. You can say, for example, “Repeat the ask com-
mand until the user enters a positive number.” Or, “Repeat firing missiles
until the player’s energy level drops below a certain value.” The following
sections explain condition-controlled loops in more detail.

Repetition: A Deeper Exploration of Loops 157

The repeat until Block
Let’s say you are developing a game that presents the player with an
 ele mentary math question. If the player’s answer is incorrect, the game
asks the same question again to give the player another chance. In other
words, the game asks the same question until the player enters the correct
answer. Clearly, the repeat block is inappropriate for this task because you
don’t know in advance how many times it will take the player to enter the
right answer; the first try might be a winner, or it may take 100 tries. The
repeat until block can help you in scenarios like this one. The structure
of the repeat until block is illustrated in Figure 7-2.

Test Condition False

True

Test Conditionrepeat until

Command 1

Command 2

...

Command N

Next Command

TrueFalse

Next Command

Execute
command(s) in
the body of the

loop

Figure 7-2: The repeat until block allows you to execute a series of instructions repeat-
edly until some condition is true .

This block contains a Boolean expression whose value is tested at the
entry of the loop. If the expression is false, the commands inside the loop
are executed. When the last command in the loop is executed, the loop starts
over, and the expression is tested again. If the expression is still false, the
commands inside the loop are executed again. This cycle repeats until the
test expression becomes true. When that happens, the commands inside
the loop are skipped, and the program moves to the command that imme-
diately follows the loop.

Note that if the test condition is already true before the program
runs the loop the first time, the commands in the loop won’t be executed.
Also, the repeat until block won’t terminate unless a command (either
inside the loop or in some other active part of the program) causes the test
condition to become true. If the result of the test condition never becomes
true, we get into an infinite loop.

Figure 7-3 shows a practical example of using the repeat until block.
In this example, as long as the Player sprite is more than 100 steps away
from the Guard sprite, the Guard sprite will continue to move in its current
direction (horizontally in this case), bouncing when it touches the left or
the right edge of the Stage. If the distance between the two sprites becomes
less than 100, the repeat until block will terminate, and the Guard sprite
will start to chase the Player sprite. The code for the chase is not shown in
the figure. The distance to block is found in the Sensing palette.

158 Chapter 7

Guard

Start Chasing the Player Sprite

Continue to move left and right
until the Player sprite comes close.

When Player is within
a distance of 100, start
chasing the player.

Script for the Guard sprite

Player

Figure 7-3: A simple example showing the repeat until block in action

Building a forever if Block
Infinite loops are useful in a lot of programming situations. In the previ-
ous chapters, for example, you used the forever block to play background
music, and you animated sprites by changing their costumes continuously.
The forever block is an unconditional infinite loop because it doesn’t have a
test condition that controls the execution of the commands inside it.

You can easily change that, however, by nesting an if block inside a
 forever block to create a conditional infinite loop, as shown in Figure 7-4.
The test condition of the if block is tested at the beginning of every itera-
tion, and its commands only execute when the test condition is true. Note
that since the forever block is supposed to execute forever, you can’t snap
command blocks after it.

Command N

...

Test Condition

Command 1 If the test condition is true,
execute these commands. Then
check the condition again.

If the test condition is false,
then check again.

Notice that there is no bump at
the bottom, so you can’t snap
any blocks here.

False

True

Figure 7-4: You can create a forever/if loop by combining a forever
block with an if block .

t ry i t ou t 7-1

Open the application Chase.sb2 and run it . Use the arrow keys to move the Player
sprite close to the Guard to see the chase in action . How would you change the
test condition to unleash the Guard sprite if the y-position of the Player sprite goes
outside a certain range (for example, –50 to 50)? Implement this change to check
your solution .

Chase .sb2

Repetition: A Deeper Exploration of Loops 159

The combined forever/if structure is frequently used to control sprite
movement with the keyboard arrow keys, as demonstrated in Figure 7-5.

Figure 7-5: These scripts allow you to move a sprite using the keyboard arrow keys .
Each script responds to one of the four keys .

When the green flag icon is pressed, the four keyboard arrow keys
(left, right, up, and down) are monitored in four independent infinite
loops. When any of these keys is pressed, the corresponding loop causes
a change in the x- or y -coordinate of the sprite.

Create these scripts in Scratch (or open ArrowKeys1.sb2) and run
the program. Notice that if you press the up and right arrow keys simul-
taneously, the sprite will move diagonally in the northeast direction. Try
other combinations of the arrow keys to see how the application responds.

ArrowKeys1 .sb2

t ry i t ou t 7-2

Another way to control the sprite’s movement with the arrow keys is shown below .
Compare this method to the one shown in Figure 7-5 . Which is more responsive
to keyboard strokes? How does the alternate script behave if you press two keys
(for example, up and right) simultaneously? Now, try placing the four if blocks
in Figure 7-5 together in a single forever loop and press two arrow keys at the
same time . How does the sprite’s behavior change?

160 Chapter 7

Stop commands
Let’s say you’re writing a program to find the first integer less than 1,000
that is evenly divisible by 3, 5, and 7. You can write a script that checks
the numbers 999, 998, 997, and so on, one by one, in a loop. You want to
stop the search when you find the number you’re looking for (945 in this
example).

How can you tell Scratch to end the loop and stop the script? You can
use the stop command (from the Control palette) to end active scripts. The
drop-down menu provides the three options shown in Figure 7-6.

Stop the script that
invoked this block.

Stop all scripts in the
application.

Stop all scripts in a sprite except the
one that invoked this block.

or Stage

Figure 7-6: Using the stop command in Scratch

The first option immediately terminates the script that calls it. The
second option, on the other hand, stops all running scripts in your appli-
cation; it is equivalent to the red stop icon located at the top of the Stage.
Note that you can’t snap any commands after the stop block when you use
either of these two options.

The third stop option allows a sprite or the Stage to end all of its scripts
except the one that invoked the stop block. This command is shaped as a
stack block, so you can add blocks below it to execute after it suspends the
sprite’s other scripts. Let’s see this command in action in a simple game,
illustrated in Figure 7-7.

Ball1 Sprite

Player Sprite

Ball2 Sprite

Figure 7-7: In this game, the player moves the witch on the Stage while trying to
avoid the two balls .

StopDemo .sb2

Repetition: A Deeper Exploration of Loops 161

The two balls in this figure move around the Stage and chase the
witch. The player moves the witch sprite with the keyboard and tries to
avoid being touched by the two balls. If the red ball touches the player at
any time, the game ends. If the green ball touches the player, it will stop
chasing the player, but the red ball will start to move a little faster—which
makes escaping it a real challenge.

The scripts for moving the witch sprite are similar to those of Fig-
ure 7-5, so I won’t show them here. The scripts for the two balls are shown
in Figure 7-8—let’s take a look at those.

Figure 7-8: Scripts for the green ball (left) and red ball (right)

When the green ball touches the player, it increases the speed variable
(which sets the movement speed of the red ball), and it invokes the stop
this script command to terminate its script. All other scripts in the game
should continue to run normally. Using the stop this script command
works well here because we only want to speed up the red ball once. If the
red ball touches the player, however, it executes the stop all command,
which causes all running scripts in the application to stop.

You can also use the stop block to terminate a procedure and make
it return to the caller at any point during its execution. The next section
shows this concept in action.

t ry i t ou t 7-3

Load this game and play it to see how it works . Watch what happens to the yel-
low border around the two scripts of Figure 7-8 when the green and the red balls
touch the Player .

162 Chapter 7

Ending a Computational Loop
Let’s say that we want to find the first power of 2 that is larger than 1,000.
We’ll write a procedure that checks the numbers 21, 22, 23, 24, and so on, in
a loop. When we find the number we need, we want the program to say the
answer and stop the procedure. Figure 7-9 shows two ways to implement this
approach.

Call the FindAnswer
procedure. When it
returns, display the
result (which is saved
in the result variable).

Alternative
implementation

Figure 7-9: Two ways to find the first power of 2 that is larger than 1,000

The procedure on the left in Figure 7-9 initializes the result variable
to 2, which is the first power of 2 to be checked, and enters an infinite
loop in search for the answer. It checks the value of result in each itera-
tion of the loop. If result is greater than 1,000, the procedure invokes the
stop this script command to stop and return to the caller. Otherwise, the
command after the if block (which multiplies the previous value of result by
2) executes, and the next iteration of the loop begins. If you trace through
this procedure, you’ll see that the if block finds result to be 2 in the first
iteration, 4 in the second iteration, 8 in the third iteration, and so on. This
continues until result exceeds 1,000; at this point, the procedure stops and
returns to the caller, which displays the result using the say block.

Figure 7-9 (right) shows another way to implement the procedure.
Here, we used a repeat until block that continues to loop until result
becomes greater than 1,000. As in the first implementation, the loop
continues to double the value of result until it exceeds 1,000. When this
happens, the loop terminates naturally, and the procedure returns to the
caller. Note that we did not have to use the stop block in this case.

The stop block is also useful when you need to validate input from
users. You’ll see an example of this practical application next.

Validating User Input
When you write an application that reads some data from the user, you
should always check that the entered values are valid before starting to pro-
cess the data. Repetition structures can help you with this task. If the user’s
input is invalid, you can use a loop to display an appropriate error message
and ask the user to reenter the value.

NumberSearch
 .sb2

Repetition: A Deeper Exploration of Loops 163

To demonstrate, let’s say that you are developing a game with two levels
and you want to let the user select a level to play. The only valid entries in
this case are the numbers 1 and 2. If the user enters a number other than
these two numbers, you’d like to offer another chance to enter an accept-
able value. One way to implement this check is shown in Figure 7-10.

answer=
1 or 2?

stop script ask again

NoYes

Figure 7-10: Input validation using the forever block

The GetLevel procedure asks the user to enter a choice and checks
the answer inside a forever loop. If the user’s answer is invalid, the loop
prompts the user to reenter the level. If the user enters a valid number,
the procedure calls stop this script to terminate the loop and end the
procedure. When this happens, the main script, which has been patiently
waiting for the GetLevel procedure to return, moves on to execute the say
command. Figure 7-11 shows how to achieve the same task using the repeat
until block.

answer=
1 or 2? Yes

No

Loop ends. Procedure
returns to caller.

Figure 7-11: Input validation using the repeat until block

The procedure in Figure 7-11 asks the user to enter a choice and waits
for the answer. If the user enters 1 or 2, the condition in the header of the
repeat until block evaluates to true, which naturally terminates the loop
and ends the procedure. On the other hand, if the user enters anything
other than 1 or 2, the loop’s condition evaluates to false, and the ask com-
mand inside the loop executes. This command waits for the user’s input
again, and the repeat until block will continue asking for input until the
user enters a valid choice. Once again, note that this implementation
doesn’t require a stop block.

164 Chapter 7

counters
Sometimes, you’ll need to keep track of the number of iterations a loop per-
forms. For example, if you want to give users only three chances to enter the
correct password, you’ll have to count their attempts and lock them out after
the third try.

You can handle such programming scenarios by using a variable (com-
monly referred to as the loop counter) that counts the number of loop itera-
tions. Let’s jump right in and explore some examples that demonstrate
practical ways to use loop counters.

Check a Password
The program in Figure 7-12 asks the user to enter a password for unlock-
ing a laptop. The Laptop sprite has two costumes: the off image indicates
that the laptop is locked, and the on image indicates that the laptop is
unlocked. The user will be denied access to the laptop if an invalid pass-
word is entered three times.

Laptop starts in a
“locked” state.

Costume for an
“unlocked” laptop.

Figure 7-12: This script gives the user three chances to enter the correct password .

When the green flag is clicked, the Laptop sprite switches to the off
costume and calls the GetPassword procedure to authenticate the user.
This procedure is expected to return the password check result to the main
script using the gotPass flag. When the procedure returns, the if/else block
checks the gotPass flag to decide whether or not the user should be allowed
to access the system. If gotPass was set to 1, meaning the user entered the
correct password, the if block executes a say command that displays Access

Password
Check .sb2

Repetition: A Deeper Exploration of Loops 165

granted and changes the laptop’s costume to the on image. Otherwise, the
script displays Access denied! and the sprite continues to show its initial off
costume.

The GetPassword procedure sets the gotPass flag to 0, to indicate that it
hasn’t received a valid password yet, and initializes the failCount variable (our
loop counter) to 0. It then executes a repeat loop with a maximum repeat
count of three. During each iteration of the loop, the user is prompted to
enter a password. If the user enters the correct password (Pass123 in this
example), the gotPass flag is set to 1, the procedure stops itself by invok-
ing the stop this script command, and execution returns to the caller.
Otherwise, if the user hasn’t used up all three attempts, an error message
is displayed, and the user is given another chance. If the user fails three
consecutive times, the repeat loop automatically terminates, and the pro-
cedure returns to the caller with the value of the gotPass flag still set to 0.

Counting by a Constant Amount
Of course, you don’t always have to increase your counters by 1 each time
through a loop. The script in Figure 7-13 at u, for example, has a sprite
count from 5 to 55 in increments of 5. The script at v causes the sprite
to count down from 99 to 0 in decrements of 11—in other words, 99, 88,
77, ... , 11, 0.

Figure 7-13: You can increment and decrement counters by amounts
other than 1 .

To see this counting technique in a practical application, let’s say that
we want to find the sum of all even integers from 2 to 20 (inclusive). (That
is, we want the sum 2 + 4 + 6 + 8 + ... + 20.) The script of Figure 7-14 does
exactly that.

CountingBy
ConstAmount

 .sb2

t ry i t ou t 7- 4

Open this application and run it . What happens if you enter paSS123 (instead
of Pass123) for the password? What does this tell you about string comparison
in Scratch? Try to implement the GetPassword procedure using a repeat until
block .

166 Chapter 7

count

0 2

2 4

+

6 6

+

12 8

+

20 10

+

... ...

sum

Figure 7-14: This script finds the sum of all even integers from 2 to 20 .

This script starts by initializing the sum variable to 0 and the count
variable to 2, and then enters a conditional loop that repeats until count
exceeds 20. Each time the loop iterates, the value of count is added to the
current sum and the count variable is increased by 2 to get the next even
integer in the sequence. Predict the output of this script then run it to
check your answer.

non-in t ege r r e Pe at coun t

What do you think would happen if you asked Scratch to repeat a loop
2 .5 times? The three examples shown below demonstrate how Scratch
 handles non-integer repeat counts .

Of course, there is no such thing as “repeat 2 .5 times,” but Scratch doesn’t
prevent you from entering such values . Rather than giving an error message,
Scratch automatically rounds a decimal repeat count to its nearest integer .

Non-Integer
RepeatCount .sb2

Repetition: A Deeper Exploration of Loops 167

revisiting nested Loops
Back in “Rotated Squares” on page 34, we used nested loops to draw
rotated squares. One loop (the inner loop) was responsible for drawing the
square, while the other loop (the outer loop) controlled the number of rota-
tions. In this section, you’ll learn how to use the concept of loop counters in
conjunction with nested loops to create iterations in two (or more) dimen-
sions. This technique is an essential part of programming and, as you’ll see
in a moment, can be used to solve a wide range of programming problems.

To set the stage, let’s say that a local restaurant offers four kinds of pizza
(P1, P2, P3, and P4) and three kinds of salads (S1, S2, and S3). If you ate
there, you would have 12 possible combinations to choose from; you could
have P1 with any of three salad types, P2 with any of three salad types, and
so on. The restaurant’s owner wants to print out a menu that lists the avail-
able pizza/salad combinations along with their combined prices and calorie
contents. Let’s see how nested loops can be used to generate a list of all pos-
sible combinations. (I’ll leave calculating the prices and calorie content as
an exercise for you.)

If you think about it, you’ll see that we just need two loops: one loop
(the outer loop) to cycle through the pizza types and another loop (the
inner loop) to cycle through the salad types. The outer loop starts with P1,
while the inner loop tries S1, S2, and S3. The outer loop then moves to P2,
and the inner loop again chooses S1, S2, and S3. This continues until the
outer loop has passed through all four pizza types. An implementation of
this idea is illustrated in Figure 7-15.

P=1

P=
2

P=3

P=
4

1

2

3

1

1

1

2

2

2

3

3

3

S

S

S

S

Figure 7-15: Visualizing nested loops . The variable P controls the outer loop and
the variable S controls the inner loop .

The script uses two loops and two counters. The counter for the outer
loop is named P, and the counter for the inner loop is named S. In the first
iteration of the outer loop (where P = 1), the value of counter S is set to 1,
and the inner loop repeats three times. Each time, it executes a say com-
mand to display the current values of P and S, and then it increments S by 1.
Thus, the first iteration of the outer loop causes the sprite to say “P1,S1” and
“P1,S2” and “P1,S3.”

NestedLoops1
 .sb2

168 Chapter 7

When the inner loop terminates after looping three times, P is incre-
mented by 1, and the second iteration of the outer loop starts. The value
of S is reset to 1, and the inner loop is executed again. This causes the
sprite to say “P2,S1” and “P2,S2” and “P2,S3.” The process continues in a
similar manner, causing the sprite to say “P3,S1” and “P3,S2” and “P3,S3”
and finally “P4,S1” and “P4,S2” and “P4,S3” before the script ends. Trace
through this script to make sure you understand how it works.

Now that you’ve seen what nested loops can do, let’s apply this tech-
nique to solve an interesting math problem. We want to write a program
to find three positive integers n1, n2, and n3 such that n1 + n2 + n3 = 25 and
(n1)

2 + (n2)
2 + (n3)

2 = 243. Because computers are good at repetitive tasks,
our plan is to try all possible combinations of numbers (a technique called
exhaustive search) and let the computer do the hard work.

Based on our first equation, the first number, n1, can have any value
between 1 and 23 since we’ll need to add two numbers to it to get 25. (You
might have noticed that n1 can’t be more than 15 because 162 = 256, which
is greater than 243. But we’ll just ignore our second equation for now and
set the upper limit of the loop to 23 anyway.)

The second number, n2, can be any value between 1 and 24 – n1. For
example, if n1 is 10, the maximum possible value of n2 is 14 because n3 must
be at least 1. If we know n1 and n2, we can compute n3 as 25 – (n1 + n2). Then,
we’ll need to check whether the sum of the squares of these three numbers
is 243. If it is, we are done. Otherwise, we need to try a different combina-
tion of n1 and n2. You can see the finished script to find n1, n2, and n3 in
Figure 7-16.

The outer loop will try n1 =1, 2, ... , 23.

The inner loop will try n2 =1, 2, ... , (24−n1).

For each (n1,n2)
combination,
compute n3
and check the
sum of squares.
If it is 243,
say the answer
and stop.

Try the next value of n2.

None of the tried n2 values worked. Try next value of n1.

We tried all possible (n1,n2) combinations and nothing
worked. The problem does not have a solution.

Figure 7-16: This script searches for three positive numbers whose sum is 25 and whose
sum of squares is 243 .

NestedLoops2
 .sb2

Repetition: A Deeper Exploration of Loops 169

The outer loop tries all values of n1 from 1 to 23. For each value of n1,
the inner loop tries all values of n2 from 1 to (24 – n1). For each combination
of n1 and n2, the script sets n3 equal to 25 – (n1 + n2), and then it checks to
see whether the sum of the squares of these three numbers is 243. If it is,
the script says the answer and stops.

recursion: Procedures that call themselves
The repetition structures introduced so far allow us to repeat a command
or a set of commands through iteration. Another powerful technique that
produces repetition is recursion. Recursion allows a procedure to either call
itself directly or do so indirectly through another procedure (for example,
A calls B, B calls C, then C calls A). It may not be obvious why you want to do
this, but it turns out that recursion can simplify the solution of many com-
puter science problems. Let’s demonstrate this concept by considering the
simple example shown in Figure 7-17.

Call Tic again.
This should continue
forever!

Figure 7-17: A recursive procedure

The Tic procedure executes two say commands (the first says “Tic” and
the second says “Tac”), then calls itself again. The second call does the same
thing, and the sprite would continue saying, “Tic Tac” forever if no outside
action stopped it. Of course, the only way to stop it in this case is to click the
red stop icon. Having a procedure call itself this way allowed us to repeat
the two say commands forever without using any loop blocks. The form of
recursion used in this example is called tail recursion because the recursive
call is located at the very end of the procedure. Scratch also allows recursive
calls to come before the last line, but we won’t explore that type of recur-
sion in this book.

Recursion .sb2

t ry i t ou t 7-5

Create the script shown in Figure 7-16 and run it to find n1, n2, and n3 . If you study
the script carefully, you’ll find that it tries some (n1, n2) combinations more than
once . For example, the numbers (1, 2) are tested in the first iteration of the outer
loop, whereas the numbers (2, 1) are tried in the second iteration . These two tests
are redundant; we only need one of them . You can fix this by having the inner
loop start from n1 instead of 1 . Make this change to the script and then run it to
make sure it still works as expected .

170 Chapter 7

Since infinite recursion is generally not a good idea, you must control
the execution of a recursive procedure with conditionals. For example, the
procedure could include an if block that determines whether the recursive
call should be made. To demonstrate this technique, Figure 7-18 shows a
recursive procedure that counts from some initial number (specified by
the parameter count) down to 0.

(3 > 0)?

say 3

CountDown(2) return

CountDown(3)

(2 > 0)?

say 2

CountDown(1)

(1 > 0)?

say 1

CountDown(0)

(0 > 0)?

say 0

Yes Yes Yes No

return to
CountDown (1)

...
return path

return to
CountDown (2)

Figure 7-18: The if block is used to determine whether (or not) the recursive call should
be made .

Let’s walk through how CountDown works when it is called with an argu-
ment of three. When the procedure starts, the say command shows the num-
ber 3, then checks whether count is greater than 0. Since 3 is greater than 0,
the procedure subtracts 1 from count to call itself with an argument of 2.

In the second call, the procedure shows the number 2 and, because 2 is
greater than 0, calls itself one more time with an argument of 1. This con-
tinues until the call CountDown(0) is made. After showing the number 0 in
a voice bubble, the procedure checks whether count is greater than 0. Since
the expression in the header of the if block evaluates to false, no further
recursive calls will be made, and the procedure returns. Try to follow the
return path shown in Figure 7-18.

Now that we’ve covered the basics of tail recursion, we can apply it to
more interesting applications. Let’s consider, for example, the Blade proce-
dure shown in Figure 7-19.

Start
...

Figure 7-19: Using a sprite’s direction to stop recursion

RecursionBlade
 .sb2

Repetition: A Deeper Exploration of Loops 171

We assume that the sprite that executes this procedure starts some-
where on the Stage pointing in the direction of 90°. After drawing an
equilateral triangle, the sprite moves 12 steps forward and then turns 10°
counterclockwise. The procedure then checks the new direction of the
sprite. If the sprite is not pointing in the direction of 90°, the procedure
calls itself again to draw the next triangle in the sequence. Otherwise, the
recursive call doesn’t happen, and the procedure ends after drawing the
saw blade shown in Figure 7-19.

For simple examples like the ones shown here, it is probably easier to
use a repeat block to achieve the desired repetition. But as I mentioned at
the start of this section, there are many problems that are easier to solve
with recursion rather than iteration.

Scratch Projects
Now that you know how to use repetition to your advantage in Scratch
scripts, it’s time to put what we’ve learned in this chapter to some practi-
cal use. In this section, I’ll guide you through a range of projects to help
you strengthen your understanding of programming and provide you with
some ideas for your own projects.

Analog Clock
The current block from the Sensing palette can report the current year,
month, date, day of the week, hour, minutes, or seconds, depending on
what you select from the drop-down menu. Our first project will use this
block to implement the analog clock shown in Figure 7-20. The application
contains four sprites: the Sec, Min, and Hour sprites, which represent the
three hands of the clock, and the Time sprite (a small white dot), which dis-
plays the time in digital format (see the thought bubble in the figure).

AnalogClock
 .sb2

t ry i t ou t 7-6

What does the following procedure do? Implement it and call it with different
arguments to check your answer .

172 Chapter 7

Min sprite

Hour sprite

Sec sprite

Time sprite

Figure 7-20: The Analog Clock application

The clock starts running when the green flag is clicked. In response, all
four sprites start a forever loop to update their status based on the current
system time. The scripts for the Sec and Min sprites are shown in Figure 7-21.

Script for the Sec sprite Script for the Min sprite

Figure 7-21: The scripts for the Sec and Min sprites

The number of seconds and minutes reported by the current block
ranges from 0 to 59. When the system reports 0 seconds, the Sec sprite
should point up (toward 0°), at 15 seconds, the Sec sprite should point
right (toward 90°), and so on. Every second, the Sec hand should turn 6°
(360° divided by 60 seconds) clockwise. A similar reasoning applies to the
Min hand. If you watch this clock running, you’ll notice the Sec hand jump-
ing every second and the Min hand jumping every minute. Now, let’s look
at the script for the Hour sprite, shown in Figure 7-22.

hour angle
---- -----
0 0
1 30
2 60
... ...
11 330
12 360
13 390 (or 30)
14 420 (or 60)
... ...

Figure 7-22: The script for the Hour sprite

Repetition: A Deeper Exploration of Loops 173

The current(hour) block reports the system clock’s hour as a number
from 0 to 23. We need the Hour hand to point toward 0° (that is, up) for
hour 0, 30° for hour one, 60° for hour two, and so on, as illustrated in the
figure. Of course, if the current time is, let’s say, 11:50, we don’t want the
Hour hand to point exactly at 11 but rather more toward 12. We can make
this adjustment by taking the current minutes into account.

Since every hour (or 60 minutes) corresponds to 30° on the face of the
clock, every minute is worth 2°. Therefore, every minute, we need to adjust
the angle of the Hour hand by the current number of minutes divided by 2,
as shown in the script.

The script for the Time sprite is trivial and isn’t shown here. It uses
nested join blocks to construct a display string of the form hour:min:sec and
shows this string in a think bubble, as shown in Figure 7-20.

Bird Shooter Game
Now, let’s make a simple game that uses most of the blocks we introduced in
this chapter. The player’s goal will be to knock two birds out of the sky, and
you can see the user interface in Figure 7-23.

Bird1 sprite

Bird2 sprite

Bullet sprite

Clone of Bird1

Shooter sprite

Figure 7-23: User interface of the bird shooter game

BirdShooter .sb2

t ry i t ou t 7-7

Open the application and run it . Change the script for the Min sprite to make it
move smoothly, instead of jumping every minute . (Hint: Use the same idea we
applied to smooth the movement of the hour hand .) Also, change the script of the
Time sprite to display a string of the form “3:25:00 pm” (12-hour format) instead of
“15:25:00” (24-hour format) . Think of other ways to enhance the application and
try to implement them as well .

174 Chapter 7

As shown, the game contains five sprites: Bird1, a clone of Bird1, Bird2,
a shooter, and a bullet. The player can move the shooter horizontally using
the left and right keyboard arrows. Pressing the spacebar fires a bullet
into the sky. If the bullet hits Bird1 or its clone, the player gets a point. Bird2
is an endangered species, so the player isn’t allowed to shoot that one; if the
bullet hits that sprite, the game ends. The player has one minute to shoot
as many birds as possible.

Each bird uses two costumes. When switching between these two cos-
tumes, the birds appear to be flapping their wings.

The Stage has two backgrounds named start and end. The start back-
ground is shown in Figure 7-23. The end background is identical, with the
addition of the words Game Over to the center of the image. The scripts that
belong to the Stage are shown in Figure 7-24.

Figure 7-24: The scripts for the Stage in the bird shooter game

When the green flag icon is
pressed, the Stage switches to the
start background, resets the timer,
and starts a loop that updates and
checks the remaining game time,
which is tracked by the TimeLeft vari-
able. When TimeLeft reaches 0 or
when the Stage receives the GameOver
broadcast message, it executes the
GameOver handler. This script waits
for a short time to allow the birds to
hide themselves, switches to the end
backdrop, and calls stop all to end
any running scripts. As you’ll see
soon, the GameOver message will be
sent by the Bullet sprite when it hits
Bird2. Let’s now take a look at the
script for the Shooter sprite, shown
in Figure 7-25.

Figure 7-25: The script for the Shooter
sprite

Repetition: A Deeper Exploration of Loops 175

This script starts by positioning the shooter in the middle of the bot-
tom edge of the Stage. The script then enters an infinite loop that detects
whether the left or right arrow keys have been pressed and moves the shooter
in the corresponding direction. Now let’s move on to the scripts for Bird1,
shown in Figure 7-26.

Figure 7-26: The scripts for the Bird1 sprite

When the game starts, Bird1 clones itself, moves to left edge of the
Stage, and calls the Start procedure. The clone also starts at the left edge
of the Stage (but at a different height) and calls Start. This procedure uses
a forever loop to move the bird and its clone horizontally across the Stage,
from left to right with random steps. When the bird approaches the right
edge of the stage, it is moved back to the left edge, as if it wraps around and
reappears. The last script hides both birds when the GameOver message is
broadcast.

The scripts for Bird2 are very similar
to those of Bird1, so we won’t show them
here. When the green flag is clicked, Bird2
moves to the right edge of the Stage at
a height of 40 and then executes a loop
similar to that of the Start procedure of
Figure 7-26. The bird simply moves from
left to right, wrapping around when it
reaches the right edge of the Stage. Bird2
also responds to the GameOver broadcast
by hiding itself.

Of course, the player can’t hit any
birds just by moving the shooter around,
and that’s where the Bullet sprite comes in.
The main script for this sprite is shown in
Figure 7-27.

Figure 7-27: The main script of the
Bullet sprite

176 Chapter 7

When the green flag is clicked,
this script initializes the variables
Fired (the number of bullets fired)
and Hits (how many birds have been
hit) to 0. It then points the Bullet
sprite up and hides it. After that,
it enters an infinite loop to repeat-
edly check the status of the space-
bar key. When spacebar is pressed,
the script increments Fired by 1 and
creates a clone of the Bullet sprite
to move the bullet upward, as we’ll
see next. The script then waits some
time to prevent the player from fir-
ing another bullet too soon. Now
we’re ready to study the script of the
cloned bullet, shown in Figure 7-28.

First, the Bullet is moved to the
center of the Shooter and is made
visible u. The Bullet is then moved
upward in increments of 10 steps
using a repeat until block v. If
the bullet’s y -coordinate exceeds
160, then the Bullet has reached the upper edge of the Stage without touch-
ing any birds. In this case, the repeat until block exits y, and the clone is
deleted. A hit check, however, is performed each time the bullet moves. If
the bullet touches Bird1 (or its clone) w, the script increases the Hits variable
and plays a sound to make the game more exciting. On the other hand,
if the bullet touches Bird2 x, the script broadcasts GameOver to signal the
end of the game. In both cases, the clone is deleted since it has finished
its job.

The game is now fully functional, but you could add many features to it.
Here are two suggestions:

•	 Give the player a limited number of bullets and keep score based on the
number of missed shots.

•	 Add more birds and have them move at different speeds. Reward the
player with more points for hitting faster birds.

t ry i t ou t 7-8

Open the game and play it to see how it works . Modify the game with some of
the enhancements suggested above—or come up with a few of your own and
implement those!

Figure 7-28: The startup handler of a
cloned Bullet

Repetition: A Deeper Exploration of Loops 177

Free-Fall Simulation
In this section, I’ll present an application that simulates the motion of a
falling object. Ignoring the effects of buoyancy and air resistance, when
an object at rest is dropped from some height, the distance d (in meters)
fallen by the object during time t (in seconds) is given by d = ½ gt2, where
g = 9.8 m/s2 is the gravitational acceleration. The goal of this simulation is
to show the position of the falling object at times 0.5 s, 1.0 s, 1.5 s, 2.0 s, and
so on, until the object reaches the ground. The interface for this simulation
is shown in Figure 7-29.

Duration of the fall

Distance fallen

Object at rest falling from a
height of 35 meters. It has
the following costumes:

y-position: 136

y-position: −132

ball marker

Figure 7-29: User interface for the free-fall simulation

An object at rest (the ball in the figure) will be allowed to fall from a
height of 35 m. A simple substitution in the above formula shows that the
object will reach the ground after t = (2 × 35)/ 9.8 = 2.67 s. The application
has one sprite (called Ball) that has the two costumes shown in the figure.
When it is time to show the position of the falling ball, the sprite changes
momentarily to the marker costume, makes a stamp, and switches back to
the ball costume.

The simulation starts when the green flag is clicked. In response, the
Ball sprite runs the script shown in Figure 7-30.

During initialization u, the sprite moves to its starting position, switches
to the ball costume, clears its voice bubble from the previous run, and clears
the Stage from any previous stamps. It then initializes t and counter to 0.
The variable t represents the duration of the fall, and counter keeps track
of the number of loop repetitions.

The script then enters an infinite loop v to calculate the simulation
parameters at different time intervals. It performs those calculations and
updates the ball’s position every 0.05 s w to ensure the ball’s smooth move-
ment. Every 0.05 s, the value of the time variable t is updated, and the dis-
tance the ball has fallen (d) is calculated. The value of the counter variable
is also incremented by 1.

FreeFall .sb2

178 Chapter 7

Figure 7-30: Script for the Ball sprite in the free-fall simulation

If the ball reaches the ground (which happens at d ≥ 35), the script
sets the ball’s y -position to that of the ground, displays the actual duration
of the journey, and stops the script to end the simulation x.

Otherwise, the script sets the vertical position of the ball in accor-
dance with the fallen distance y. Since a height of 35 m corresponds to
268 pixels on the Stage (see Figure 7-29), a distance of d meters corre-
sponds to 268 * (d / 35). The final y -position is established by subtracting
this number from the initial y -position, which is 136.

Since the iteration duration is 0.05 s, it takes 10 iterations to get 0.5 s.
Thus, when the counter becomes 10, 20, 30, and so on, the Ball sprite
switches to (and stamps) the marker costume to show the position of the
falling ball at those instants z.

Figure 7-31 illustrates the result of running this simulation. Note
how the distance fallen in each time interval increases as the object falls.
Because of gravity, the ball accelerates—its velocity increases—at a rate
of 9.8 m/s2.

t ry i t ou t 7-9

Open the application and run it to understand how it works . Try converting the
simulation into a game in which players drop the ball to hit a moving object on
the ground . You can add a score, change the speed of the target, or even set the
action on another planet (change the gravitational acceleration) .

Repetition: A Deeper Exploration of Loops 179

These markers indicate the ball’s
position at times 0.5, 1.0, 1.5,
2.0, and 2.5 seconds.

Figure 7-31: Output of the free-fall simulation

Projectile Motion Simulator
Consider a ball fired at some initial velocity (v0) from a cannon that points
at an angle q from the horizontal. You can analyze the ball’s trajectory by
resolving the velocity vector (v0) into its horizontal and vertical components
at different times. The horizontal component remains constant, but the
vertical component is affected by gravity. When the motions corresponding
to these two components are combined, the resulting path is a parabola.
Let’s examine the equations that govern projectile motion (neglecting air
resistance).

The origin of our coordinate system is the point at which the ball begins
its flight, so the ball’s x -coordinate at any time, t, is given by x(t) = v0xt,
and the y -coordinate is y(t) = v0yt − (0.5)gt2, where v0x = v0 cos q is the
x - component of v0; v0y = v0 sin q is the y -component of v0; and g = 9.8 m/s2
is the gravitational acceleration. Using these equations, we can calculate
the total flight time, the maximum height, and the horizontal range of the
ball. The equations for these quantities are shown in Figure 7-32.

at the top,

travel time

maximum heightvy = 0

v0

θ

v
v

y
0

0
=

 s
in

 θ

v vx0 0= cos θ

d
v

g
= 0

2 sin 2θ

h
v

g
=
()0

2

2

 sin θ

t
v

g
=

2 0 sin θ

Figure 7-32: Parabolic trajectory of a ball

Projectile .sb2

180 Chapter 7

This information is all we need to realistically simulate the ball’s motion,
so let’s create a Scratch program so we can see this bit of physics in action
and deepen our understanding of trajectories. The user interface of the
simulation is shown in Figure 7-33.

Set the launch speed (m/s).

Set the launch angle.

Fire sprite

Cannon sprite

Wheel sprite

Ball sprite

Show flight time (s) and
horizontal range (m).

Distance (m)

(x,y) = (–180, –140)

Figure 7-33: User interface for the projectile motion simulator

As shown, the application contains four sprites. The Wheel sprite
 provides a rotation shaft for the cannon, while the Cannon sprite, which
rotates in accordance with the angle slider, provides a visual indication of
the launch angle. The Fire sprite is a button that the user clicks to fire the
ball, and the Ball sprite contains the main script for calculating the ball’s
coordinates and drawing its trajectory. The user specifies the launch angle
and the initial velocity using the two slider controls, then clicks the Fire
button. The Ball starts from point (–180, –140) on the Stage and draws the
parabolic trajectory for the specified parameters. The two monitors at the
lower-right corner of the Stage show the flight time and the horizontal
range during the flight.

The simulation starts when the green flag icon is clicked. The scripts
for the Cannon sprite (not shown here) point the cannon in the direction
specified by the angle slider control. The user can also specify the angle by
clicking and dragging the cannon. When the user clicks the Fire button, it
broadcasts a Fire message, which is received and processed by the Ball sprite
via the script shown in Figure 7-34.

To prepare to fire u, the Ball moves in front of the Cannon and the Wheel
and positions itself at the launch point. It puts its pen down and clears all
pen marks from the Stage. The script then calculates the horizontal (or x)
and vertical (or y) components of the initial velocity (named vx and vy,
respectively) and initializes the time variable (t) to 0.

Repetition: A Deeper Exploration of Loops 181

Figure 7-34: Script for the Ball sprite

The script then enters an infinite loop v, which calculates and updates
the ball’s position every 0.02 s. First, the vertical distance (dy) of the sprite is
calculated w. If the calculated value is negative, then the ball has reached
ground level. When this happens, the stop this script command is called to
end the simulation.

If dy is not negative, the horizontal distance (d) is calculated x. The
two distances (dy and d) are then scaled in accordance with the Stage’s
backdrop. In the vertical direction, we have 320 steps (from –140 to 180)
that correspond to 100 m, and in the horizontal direction, we have 420
steps (from –180 to 240) that correspond to 100 m. This means a vertical
distance of dy meters is equivalent to 320 * dy / 100 steps, and a horizon-
tal distance of d meters is equivalent to 420 * d / 100 steps. The x - and
y - coordinates of the ball are updated, and the ball is moved to its current
position on its trajectory. The time variable (t) is then incremented by a
small amount (0.02 s in this case), and the loop is repeated to calculate the
next position of the ball.

As an example, if the ball is projected with a 70° launch angle and an
initial speed of 30 m/s, as shown in Figure 7-33, the total flight time is 5.75 s,
and the range is 59 m. An examination of the monitors in Fig ure 7-33 shows
that our simulation is very accurate. We could improve the simulation by
updating our calculations more often (for example, every 0.01 s instead
of every 0.02 s), but that would slow down the simulation. It’s necessary to
adjust this parameter to achieve a good compromise between speed and
accuracy.

182 Chapter 7

Other Applications
The extra resources for this book (available at http://nostarch.com/
learnscratch/) contain three more games that you can explore on your
own, with full explanations of each script. The first is an educational
game that can be used to test the counting skills of elementary students.
It shows an amount of money in pennies and asks the player to find the
smallest number of coins needed to get that amount.

The second application is a planetary motion simulation for a simple
solar system that contains a sun and a single planet. The third application
is also a simulation, this one demonstrating the dynamics of motion as a
single gas molecule collides with the walls of a container.

Open up these applications, run them, and read through my explana-
tions to understand how they work. If you feel inspired to flex your pro-
gramming muscles, try modifying the scripts to make them do new things!

Summary
In this chapter, we explored different ways to repeat commands in Scratch.
We first examined the various loop blocks and explained the technical
terms associated with them. Then, we discussed definite and indefinite loops
and the difference between counter-controlled and condition-controlled
loops. We explored the repeat until block and the forever if structure and
used them in several examples. I also explained Scratch’s stop commands
and how you can use them to stop infinite loops and procedures. From there,
we went on to discuss using loops to validate data from user input.

You then learned how to use counters to keep track of how many
 iterations of a loop have passed and how to use counters with nested loops
to create iterations in two or more dimensions. After that, we looked at
recursion—a procedure calling itself—as another way to achieve repetition.
In the last section, we developed several applications that tied these new
concepts together to create practical programs.

The next chapter will expand on the topics you learned here and teach
you how to use counters and loops to process strings and create a different
class of interesting programs, such as a binary to decimal converter, a hang-
man game, and a math tutor for teaching fractions.

If you want to further explore the new concepts from this chapter, I
suggest trying out some of the following problems.

MatchThat
Amount .sb2

Orbit .sb2
Molecules

InMotion .sb2

t ry i t ou t 7-10

Open the application and run it to understand how it works . Then try converting this
simulation into a game . You could, for example, show an object at a random height
at the right edge of the stage and ask the player to try to hit it . If the player misses the
target, the game can provide some hints on adjusting the firing angle and velocity .

Repetition: A Deeper Exploration of Loops 183

Problems
1. Create an input validation loop that only accepts numbers in the range

of 1 through 10.

2. Write a script that asks the user, “Are you sure you want to quit [Y, N]?”
The script then checks the user’s input and only accepts the letters Y
and N as valid answers.

3. Write a program that calculates and displays the sum of all integers
between 1 and 20.

4. Write a program that calculates and displays the sum of all odd integers
between 1 and 20.

5. Write a program that displays
the first 10 numbers in the
following sequence (using
the say command): 5, 9, 13,
17, 21,

6. What does the script on the
right do? Implement the
script and run it to check
your answer.

7. If the remainder of dividing a whole number (x) by another whole
number (y) is 0, we say that y is a factor of x. For example, 1, 2, 4, and
8 are factors of 8. The script below finds and displays all the factors of
a given number (other than the number itself). Study this script and
explain how it works. What are the outputs of this script when the input
numbers are 125, 324, and 419?

8. An integer is said to be prime if it is divisible by only 1 and itself. For
example, 2, 3, 5, 7, 11 are prime numbers, but 4, 6, and 8 are not. The
procedure on the next page tests whether a number is a prime number
or not. Study this procedure and explain how it works. What are the
outputs of this procedure for the inputs 127, 327, and 523?

184 Chapter 7

9. Although the procedure in problem 8 checks all integers up to one-half
the input value, it is sufficient to set the upper limit to the square root
of the input. Make this change to the procedure and test it to see if it
still gives the same answers.

10. The sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

is called a Fibonacci series. The first two numbers in the series are 0
and 1. Each subsequent number is then calculated as the sum of the
previous two. Write a program that calculates the nth term of the
Fibonacci series, where n is entered by the user.

11. Consider the following program and its generated output. Re-create
the program and run it to see how it works. Change the turn angle
(from 10°) and the argument in the recursive call (to side + 1 or
side + 3, and so on) to discover what else you can create.

8
S t r i n g P r o c e S S i n g

A string is a series of characters that is treated as a
single unit. You can write programs to combine, com-
pare, sort, encrypt, and otherwise manipulate strings.
Here’s what you’ll learn in this chapter:

•	 How Scratch stores strings

•	 How to use the string manipulation blocks available in Scratch

•	 Several string processing techniques

•	 How to write interesting programs that process strings

We’ll start with a detailed look at the string data type, and then we’ll
write procedures to manage and manipulate strings. Those procedures will
remove and replace characters, insert and extract substrings, and random-
ize character order. After that, we’ll use these procedures and apply these
techniques to write some fun and practical applications.

186 Chapter 8

revisiting the String data type
As I mentioned in Chapter 5, Scratch has three data types: Boolean, number,
and string. At its simplest, a string is just an ordered sequence of characters.
These characters can include letters (both upper- and lowercase), digits,
and other symbols that you can type on your keyboard (+, -, &, @, and so
on). You can use strings in your programs to store names, addresses, phone
numbers, book titles, and more.

In Scratch, the characters of a string are stored sequentially. For
e xample, if you have a variable called name, executing the command set
name to Karen would store the characters as illustrated in Figure 8-1.

1 2 3 4 5

K a r e n

letter of name

Reports the letter at the
specified position in a
string.
Reports the number of
letters in a string.

Figure 8-1: A string is stored as a sequence of characters .

You can access individual characters of a string with the letter of opera-
tor. For example, the block letter 1 of name returns the letter K, and letter
5 of name returns the letter n. Scratch also provides the length of operator,
which returns the number of characters in a string. If you use these two
operators with repeat blocks, you can count characters, examine multiple
characters, and do many other useful things, as I’ll demonstrate in the fol-
lowing subsections.

Counting Special Characters in a String
Our first example script, shown in Figure 8-2, counts how many vowels are
in an input string. It asks the user to enter a string, and then it counts and
displays the number of vowels in that string.

Get the user’s answer. Initialize vowelCount to
0 and set pos to 1 to prepare for accessing
the first letter of the input string.

Loop to check every letter in the input string.

Set ch to the next letter of answer.

If ch is a vowel, increment vowelCount.

Prepare to access next character.

Figure 8-2: Vowel-counting program

VowelCount .sb2

String Processing 187

The program checks each letter in the input string one by one and
looks for vowels. Every time it finds a vowel, it increments a variable named
vowelCount by 1. The script uses a variable named pos (short for position) to
track the position of the character being checked. Let’s explore this script
in more detail.

First, the script asks the user to enter a sentence u. Scratch should
save the user’s string automatically in the built-in answer variable. Then it
sets vowelCount to 0 (since it hasn’t seen any vowels yet) and sets pos to 1 to
access the first letter of the input string.

Next, a repeat loop v checks every letter in the input string. The
length of operator reports the number of characters in the input string,
which is how many times the loop should repeat.

On each pass, the loop uses ch (short for character) to check one char-
acter of the input string w. In the first iteration of the loop, ch is set to the
first letter of answer. The second iteration sets ch to the second letter, and
so on, until the loop reaches the end of the string. The pos variable is used
to access the desired character.

The if block then checks whether the examined character is a vowel
x. If the character is a vowel, whether capital or lowercase, vowelCount is
increased by 1.

After checking one character, the loop increments pos by 1 y and starts
over to read the next character. When all the letters in the input string have
been checked, the loop terminates, and the program displays the number
of vowels it counted using the say block.

The techniques used in this example will be applied many times in the
rest of this chapter. Load the script VowelCount.sb2, run it several times, and
make sure you understand it thoroughly.

Comparing String Characters
Our second example checks whether an integer entered by the user is a pal-
indrome. A palindrome is a number (or text string) that reads the same back-
ward and forward. For example, 1234321 and 1122332211 are palindromes.
Likewise, Racecar, Hannah, and Bob are a few text palindromes. To illus-
trate our palindrome-testing algorithm, let’s say that the input number is
12344321, as illustrated in Figure 8-3.

1 2 3 4 4 3 2 1

letter position: 1 2 3 4 5 6 7 8

pos1 pos2

Figure 8-3: Using two variables to check whether or not a number is a palindrome

Palindrome .sb2

188 Chapter 8

To check whether the number is a palindrome, we need to compare
the first and eighth digits, the second and seventh digits, the third and
sixth digits, and so on. If any comparison produces a false result (meaning
that the two digits are not equal), then the number is not a palindrome.
A program that implements this palindrome test algorithm is shown in
Figure 8-4.

Set pos1 to access first digit.

Set pos2 to access last digit.

If the digits at pos1 and pos2 are
not equal, then the input number
is not a palindrome.

Move pos1 forward.

Move pos2 backward.

All digits compared are the same..
The input number is a palindrome.

We need to perform (length / 2) comparisons.

Figure 8-4: This program tests whether an integer input by the user is a palindrome .

The script accesses the digits to be compared with two variables (pos1
and pos2 in Figure 8-3) that move in opposite directions. The first variable
(pos1) starts at the first digit and moves forward, while the second variable
(pos2) starts at the last digit and moves backward. The number of required
comparisons is at most one-half the digits in the input number. With an
input of 12344321, we need at most four comparisons because the input
number has eight digits. (The same logic applies if the input integer has
an odd number of digits, since the digit in the middle of the number need
not be compared.) Once the program determines whether or not the user’s
number is a palindrome, it displays a message with the result.

t ry i t ou t 8 -1

Load Palindrome.sb2 and run it to understand how it works . Because of the way
Scratch handles decimal repeat counts, if the input number has an odd number of
digits, the script performs one extra comparison of the two digits that surround the
middle digit . Try to fix the program to perform the correct number of repeats when
the input number has an odd number of digits .

Palindrome .sb2

String Processing 189

In the next section, we’ll explore some of the most common operations
on strings and see some strategies for writing string manipulation proce-
dures in Scratch.

String manipulation examples
The letter of operator only lets you read the individual characters of a
string. If you want to insert characters into (or remove characters from)
a string, you have to do all the work yourself.

In Scratch, you can’t alter the characters in a string, so the only way to
change a string is to create a new one. For example, if you want to capital-
ize the first letter in the string “ jack”, you need to create a new string that
contains the letter J followed by the rest of the letters, ack. The idea is to use
the letter of operator to read the letters of the original string and append
theses letters to the new string, as needed, using the join operator.

In this section, we’ll develop some simple applications that demonstrate
common string manipulation techniques.

Igpay Atinlay
What if our sprites could speak a secret language? In this section, we’ll
teach them a coded language called pig latin. Our rules for creating pig
latin words will be simple. To convert a word into pig latin, move the first
letter to the end and add the letters ay. So, the word talk becomes alktay, fun
becomes unfay, and so on. Now that you know the rules, can you tell what
the title of this section originally said?

The strategy we’ll use to convert a word into pig latin is illustrated in
Figure 8-5, using the word scratch.

s c r a t

c r a t

c h

c h s a y

Input

Output

Append letters 2 to L, one by one to the output
string where L is the length of the input string.
Append the first letter to the output string.

Append “ay” to the output string.

Figure 8-5: How to translate an English word into pig latin

We’ll first append all the letters (except the first), one by one, from the
input word to the output word u. We then add the first letter in the input
word to the output v, followed by ay w. Our PigLatin procedure that imple-
ments these steps is shown in Figure 8-6.

The procedure uses three variables to create our coded words. The
variable outWord holds the output string as it’s assembled. A counter called
pos (for position) tells the script which character from the original string to
append to outWord. Finally, a variable named ch holds one character from
the input string. The procedure takes the word you want to translate into
pig latin as a parameter, named word.

PigLatin .sb2

190 Chapter 8

Initialize outWord to an empty
string and set pos to 2 to access
the second letter of word.

Append letters [2,3,4, ... , end],
one by one, from the input string
to outWord.

Append word’s first letter to outWord.

Append ay to outWord.

Figure 8-6: The PigLatin procedure

First, the procedure creates an empty string for outWord and sets pos
to 2 u. (An empty string is string that does not contain any characters; its
length is 0.) The procedure then uses a repeat block to append all letters
but the first from the input string (word) to the output string (outWord) v.
We skipped the first character, so the repeat count is one less than the
length of the input string. For each loop iteration, one character of word
is appended to outWord. At the end of the loop, the first letter of word is
appended to outWord w, along with the letters ay x.

Fix My Spelling
In this section, we’ll develop a simple game that generates misspelled
words and asks the player to enter the correct spelling. The game will cre-
ate misspelled words by inserting a random letter at a random position in
an English word. Of course, there could be more than one correct spelling
of misspelled simple words. For example, if the original word is wall and
the game produces mwall, either mall or wall would be correct. To keep our
game simple, we’ll ignore that possibility and insist on a particular spelling
for the correct answer.

FixMySpelling
 .sb2

t ry i t ou t 8 -2

Load PigLatin.sb2 and run it to test this procedure . The application asks for an input
word and then says its pig latin translation . Modify it to translate a phrase, like
“Would you like some juice?” into pig latin . (Hint: Call PigLatin for each word to
assemble the output phrase .) As another challenge, write a procedure that takes a
pig latin word as input and shows its original English word .

PigLatin .sb2

String Processing 191

First, let’s make a general procedure to insert characters at a specific
position in a string. This procedure, called Insert, takes three parameters:
the input word (strIn), the string (or character) to insert (strAdd), and the
position where you want those new characters (charPos). The procedure
generates a new string (strOut) with strAdd inserted into strIn at the correct
position, as illustrated in the example of Figure 8-7.

strOutstrAdd

strIn

charPos

Insert

help

3

hewlpw

h e l p

h e w l p

Figure 8-7: Illustrating the Insert procedure

We’ll add the characters from strIn, one by one, into strOut. When we
reach charPos, we’ll just add the character(s) from strAdd to strOut before
appending the letter at charPos from strIn. The complete procedure is
shown in Figure 8-8.

Figure 8-8: The Insert procedure

First, the procedure initializes strOut to an empty string and sets pos
to 1 to access the first letter of the input string u. It then starts a repeat
loop to append the letters of strIn, one by one, to strOut v. Each iteration
grabs the next letter of strIn and places it in the ch variable w. If the posi-
tion of the current character matches charPos, the procedure appends
strAdd to strOut x. In all cases, ch is appended to strOut y, and pos is incre-
mented to access the next letter of strIn z.

192 Chapter 8

Now that we have our Insert procedure, let’s look at the main script of
the game, shown in Figure 8-9.

Figure 8-9: The main script for the Fix My Spelling game

The alpha string contains all the letters of the alphabet. It will provide
the random letter to insert into the word we want to misspell u. The script
randomly picks a word from a premade list and saves that word as inWord v.
You’ll learn more about lists in the next chapter; for now, just think of this
list as a word bank. The script then selects a random letter (randChar) from
alpha w and a random position (randPos) to place this letter into inWord x.
The script then calls our Insert procedure to create the misspelled word
(strOut) y. After that, the script starts a loop to get the player’s answer z.
Inside the loop, the script asks the player to enter the correct spelling {,
and it uses an if/else block to check the answer |. If the player’s answer
matches the original word (inWord), the game ends; otherwise, the player
has to try again.

t ry i t ou t 8 -3

Load FixMySpelling.sb2 and play it several times to understand how it works .
Can you modify the game such that the corrupt word contains two additional
 letters instead of just one?

FixMySpelling
 .sb2

String Processing 193

Unscramble
Our last example presents another word game that is a little more challeng-
ing to play. We’ll start with an English word, scramble its letters, and ask the
player to guess the original word.

Let’s start by creating a procedure that rearranges the characters of a
given string in random order. The caller sets the input string (strIn), and
the procedure, named Randomize, modifies it so that its characters are
shuffled around, as illustrated in Figure 8-10.

strIn

Randomize

abcdefg cbeagdf

Figure 8-10: Illustrating the Randomize procedure

We’ll pick a random letter from strIn and append that letter to a tempo-
rary string, str1. (This temporary string, which starts off empty, is where we’ll
store the scrambled word as we build it.) We’ll then remove that letter from
strIn so we don’t reuse it and repeat the whole process until strIn is empty.
The Randomize procedure implements these steps as shown in Figure 8-11.

Figure 8-11: The Randomize procedure

First, Randomize sets len to the length of the input string, strIn, and
empties the temporary string, str1 u. The procedure then starts a repeat
loop to assemble the scrambled word v. The repeat count equals the length
of the input string. For each loop iteration, we pick a random position in
strIn w and append that letter to str1 x. Note that we used length of in step
w because strIn and its length will change inside the loop. After that, we
call a procedure named Remove to delete the character we just used from
strIn y. When the loop finishes shuffling letters around, strIn is set to the
scrambled word (str1) z.

Unscramble .sb2

194 Chapter 8

The Remove procedure, which lets us avoid adding the same letter to
our scrambled word twice, is shown in Figure 8-12. It removes a character
from strIn at the position you specify with the charPos parameter.

Figure 8-12: The Remove procedure

This procedure uses another temporary string, named str2, to build
the new string we want to create. It starts by emptying str2 and setting a
loop counter, n, to 1 to access the first character of strIn u. The procedure
then starts a repeat loop to assemble the output string v. If we don’t want
to delete the current character, we append it to str2 w. The loop counter is
then incremented to access the next letter of strIn x. When the procedure
finishes, strIn is set to the new word (str2) y.

Now we are ready to explore the main script of the game, shown in
Figure 8-13.

Figure 8-13: The main script of the Unscramble game

String Processing 195

The script selects a word randomly from a list and saves that word
in inWord u. It then sets strIn equal to inWord v and calls Randomize to
shuffle the characters of strIn w. After that, the script starts a loop to get
the player’s answer x. Inside the loop, the script asks the player to enter the
unscrambled word y and uses an if/else block to check that answer z. This
part is identical to what we did in the Fix My Spelling game in the previous
section.

The previous examples were just a small set of the different operations
you can do on strings. Try using the same techniques to change strings in
your own projects!

In the rest of this chapter, we’ll explore some programs that use strings
to solve interesting problems.

Scratch Projects
The procedures you just saw demonstrated the basics of processing strings.
In this section, we’ll apply what we’ve learned to write several practical appli-
cations. Along the way, you’ll learn some new programming tricks that you
can use in your own creations.

Shoot
This game is intended to teach the concept of relative motion in a fun and
engaging way. The object of the game is to estimate the turn angle and
moving distance between two objects on the Stage. The user interface for
the game is illustrated in Figure 8-14.

Player sprite

Target sprite

Helper sprite
(invisible)

In this example, the
player needs to turn
about 50°, and then
move about 220 steps
to hit the target.

Figure 8-14: The user interface of the Shoot game

When the game starts, it positions the Player and the Target sprites at
random locations on the Stage. Next it prompts the player to estimate the
turn angle and the distance the Player sprite would need to move to hit the
Target. The Player sprite is then moved according to the numbers entered by
the player. If the sprite stops within a certain radius of the Target, the player

Shoot .sb2

196 Chapter 8

wins the game. Otherwise, the Player sprite returns to its initial position,
and the player can try again. When the green flag icon is clicked to start
the game, the Player sprite runs the script shown in Figure 8-15.

Let the Helper sprite assign random locations for
the Player and the Target sprites.

Let the Target sprite move to its assigned location.

Give the player multiple chances to hit the target.

Set initial position and direction of the Player
sprite and clear the Stage from drawing pen
marks.

Let the Helper sprite get the player’s answers
(angle and distance).

Move the Player sprite based on the provided
answers.

Figure 8-15: The Player sprite script that runs when the green flag icon is clicked

The script broadcasts NewGame to instruct the Helper sprite to assign
new locations for the Player and the Target sprites u. The Helper sprite runs
a simple procedure (not shown) that updates the following five variables
with random numbers that will keep Player and Target visible (and separated
by a certain distance) on the Stage:

XPlayer and YPlayer The x- and y -coordinates of the Player sprite

XTarget and YTarget The x- and y -coordinates of the Target sprite

initAngle The initial direction of the Player sprite

Once the script has new positions for Player and Target, it broadcasts
StartGame to move the Target sprite to its new location v. (The script for
the Target sprite is not shown here.) Then the script enters an infinite loop
to give the player multiple chances to hit the target w. The loop will be ter-
minated by a stop all command (in the CheckAnswers procedure) when
the player hits the target.

Each loop iteration sets the initial position and direction of the Player
sprite and clears all pen marks from the Stage x to delete the trace left
behind from the previous guess. The script then broadcasts GetAnswers y,
and in response, the Helper sprite prompts the player to enter an answer, as
shown in Figure 8-16. The Helper sprite then splits the answer into two parts
(before and after the comma) and updates angle and distance accordingly.
Follow along with the comments on Figure 8-16 to see how this script works.

The Player sprite is then moved, with its pen down, as directed by the
player z. This leaves a visual trace of the movement route that the player
can use to refine his or her estimate for the next round.

String Processing 197

Used to hold the part of answer before the comma.

Used to hold the part of answer after the comma.

Flag to mark when we find the comma while parsing answer.

Loop counter to examine the characters of answer.

Check the characters of answer, one by one.

When we find the comma, change the flag to 1.

If we did not reach the comma yet,
append the current character to angle.

Otherwise, append the current character to distance.

Figure 8-16: The GetAnswers script

Finally, the Player sprite executes
the CheckAnswers procedure to see
whether it is close enough to the tar-
get. The game ends only if the Player
sprite comes within a very close dis-
tance of the target. Figure 8-17 shows
how the Player sprite checks its dis-
tance from the target.

The Player sprite uses the distance
to block to check how close it is to the
Target sprite. If the distance is less than
20 steps, the game considers this a hit
and says, “You won!” Otherwise, the
shooting trial is considered a miss,
the forever loop starts again, and the
player gets another chance.

Figure 8-17: The CheckAnswers proce-
dure of the Player sprite .

t ry i t ou t 8 - 4

Modify the Shoot game to keep track of the number of times it takes the player to
hit the target and assign the player a score accordingly .

198 Chapter 8

Binary to Decimal Converter
Binary (base-2) numbers have only two possible digits: 0 and 1. Most com-
puters operate and communicate with binary numbers. Humans, however,
prefer to work with numbers in the decimal (base-10) system. In this sec-
tion, you’ll develop an application that converts binary numbers to their
decimal equivalents. Later, you could use it as a game to test your ability
to perform such conversions.

Let’s first discuss how to convert from binary to decimal. Figure 8-18
shows an example using the binary number 10011011.

× 128 × 64 × 32 × 16 × 8 × 4 × 2 × 1

1 0 0 1 1 0 1 1

128 0 0 16 8 0 2 1+ + + + + + + = 155

Figure 8-18: Converting a binary number to a decimal number

All we have to do is multiply each binary digit by its corresponding posi-
tional value and add the resulting products. Positional values correspond to
increasing powers of the base from right to left, with the first position hav-
ing a power of 0. Since binary is base 2, the rightmost digit has a positional
value of 20 = 1, so you’d multiply the digit by 1. You’d multiply the next digit
by 21 = 2, the next by 22 = 4, and so on.

Figure 8-19 illustrates the user interface of the binary-to-decimal con-
version application. The program asks the user to input an 8-bit binary
number. It then shows the input number on the Stage with the Bit sprite,
which uses two costumes to represent 0 and 1. The program also computes
the equivalent decimal number, and the Driver sprite, which has a com-
puter costume, displays that value to the user.

Driver sprite

Bit sprite

Figure 8-19: Binary-to-decimal conversion program

BinaryToDecimal
 .sb2

String Processing 199

The program starts when the green flag icon is clicked. This event is
trapped by the Driver sprite, which executes the script shown and described
in Figure 8-20.

Display the result of the conversion.

Tell the Bit sprite to get ready.

Ask user to input an 8-bit binary
number.

Save the user’s answer in a variable
named binary.
Tell the Bit sprite to do the conversion.
The Bit sprite saves the answer in the
decimal variable.

Figure 8-20: The script for the Driver sprite

This script prepares the Stage and asks the user to input a binary num-
ber so the Bit sprite can begin a new round of conversion. When the Bit sprite
completes its work, the Driver sprite shows the user the decimal value, which
is computed and stored by the Bit sprite in a shared variable named decimal.

The script that the Bit sprite runs in response to the Initialize message is
illustrated in Figure 8-21.

60

Stamp 8 copies of
the Off costume.

Move to the right side
of the Stage.

Figure 8-21: The Initialize script for the Bit sprite

This script draws a bit pattern representing eight zeros on the Stage.
As you’ll see in a moment, wherever a binary 1 appears in the user’s input
string, the script should stamp a costume of digit 1 over the corresponding

t ry i t ou t 8 -5

To check your understanding, practice the following binary-to-decimal conver-
sions: (a) 1010100, (b) 1101001, and (c) 1100001 .

200 Chapter 8

bit. When the user enters the binary number to be converted, the Bit sprite
should receive the BinaryToDecimal message and execute the script shown in
Figure 8-22.

Initialize all variables
before entering the main
processing loop.

Start a loop to check all
the digits of the input
binary number in reverse
order starting with the
rightmost digit.

If the digit is a 1, update
the variable decimal by the
weight of the digit. Then
stamp the costume for
digit 1 at the correct
position on the Stage.

Get ready to process the
next digit (to the left of
the one that we just
processed).

Figure 8-22: The BinaryToDecimal script for the Bit sprite

First, the conversion procedure initializes all of the variables it will use u:

•	 length is the number of bits in the user’s binary number.

•	 pos points to the rightmost digit of the input number.

•	 weight starts at the positional value of the rightmost binary digit.

•	 decimal is set to 0 but will hold the result of the conversion at the end.

•	 xPos begins at the x-coordinate of the image of the rightmost binary digit.

Inside the repeat loop v, the procedure checks each digit to see whether
it is a 1 or a 0. If the loop finds a 1 w, it adds the current value of weight to
decimal and stamps the digit-1 costume on top of the digit-0 image.

At the end of the loop, the script updates several variables before mov-
ing to the next iteration:

•	 pos is updated to point to the digit to the left of the one we just processed.

•	 xPos is aligned with the center of the image of the next digit, just in
case we need to stamp a new image.

•	 weight is multiplied by 2, which means it will take on the values 1, 2, 4,
8, 16, and so on as the loop iterates.

String Processing 201

Hangman
In this section, we’ll write a classic Hangman game. Figure 8-23 shows the
game in action.

Hangman sprite

New sprite

Driver sprite
(hidden)

Variables c1 to c6

Variable rem

Helper sprite
(hidden)

Figure 8-23: The user interface for the Hangman game

The program randomly selects a secret six-letter word and shows one
question mark for each letter. The player has eight chances to guess the let-
ters in the word. If the player guesses a letter correctly, the program shows
all occurrences of that letter in the secret word. Otherwise, the program
shows a new part of a hanging figure (the head, body, left arm, and so on).
After eight wrong guesses, the program finishes the figure, and the player
loses the game. If the player guesses the secret word in eight attempts or
fewer, the result is victory. This application has the following four sprites:

Driver This sprite hides itself when the game starts, prompts the
player to enter guesses, and processes the player’s answers. When the
game ends, the sprite shows one of the following two costumes:

Hangman This sprite displays the evolving image of the hangman. It
has a total of nine costumes, each one showing an additional part of
the hangman’s body, as depicted in Figure 8-24.

Hangman .sb2

t ry i t ou t 8 -6

Make the Driver sprite validate the number entered by the user before broadcast-
ing the BinaryToDecimal message to the Bit sprite . You should verify that (1) the
number entered by the user is a binary number (that is, it only contains ones and
zeros) and (2) the length of the input is at most eight digits .

202 Chapter 8

Figure 8-24: The nine costumes of the Hangman sprite

New This sprite displays the New button on the Stage.

Helper This invisible sprite displays the letters guessed by the player
as well as the number of remaining attempts. It uses seven variables
with monitors configured as large displays and positioned at the correct
locations on the Stage. Using a different sprite to update the display
separates the game logic from the user interface. You can, for example,
change this sprite to show more fancy letters on the Stage without
affecting the rest of the application.

When the player presses the New sprite (the New button), it broadcasts
a NewGame message to alert the Driver sprite that a new game has started.
When the Driver sprite receives this message, it executes the script shown in
Figure 8-25.

Check the gotLetter flag to
see whether the player’s
guess was correct or not.

Reset the user interface to
prepare for a new game.

Process player’s guesses.

Ask the player for a letter and
then call ProcessAnswer to
process it.

Figure 8-25: The NewGame script of the Driver sprite

The script resets the game’s user interface u and starts a loop v to
read in letter guesses. Another procedure called by the Driver sprite will
terminate this loop via a stop all block when the game’s end condition is
detected.

String Processing 203

In each iteration of the loop, the Driver sprite asks the player to guess
a letter and waits for input w. When the player enters a guess, the script
calls ProcessAnswer, which will update a flag (named gotLetter) to indicate
whether the letter was right or wrong.

When ProcessAnswer returns, the script checks the gotLetter flag x and
acts based on whether the player’s guess was correct or not. I’ll explain the
procedures called by NewGame next, starting with the scripts in Figure 8-26.

Belongs to the
Helper sprite

Belongs to the
Driver sprite

Belongs to the
Hangman sprite

Figure 8-26: Scripts triggered from the Initialize procedure

During initialization, the Driver sprite hides itself, initializes displayWord
to a string with six question marks, and sets remAttempts (how many guesses
the player has left) to 8. It then selects the secretWord from a predefined
list of six-letter words. Next the procedure broadcasts Update so the Helper
sprite will assign its variables (whose monitors are visible on the Stage) to
the correct values. The last instruction broadcasts the Reset message to the
Hangman sprite. When the Hangman sprite receives this message, it switches
to its start costume, which shows an empty gallows.

Now let’s consider a simple example to help us understand what the
ProcessAnswer procedure does (see Figure 8-27). Assume the secret
word is across and that this is the first round of the game (which means
that displayWord is “??????”). If the player’s first guess is r, ProcessAnswer
should set gotLetter to 1 to indicate a correct guess, set displayWord to “??r???”
to show the letter’s position, and set qmarkCount (the number of question
marks in the updated display string) to 5. When qmarkCount reaches 0, the
player has guessed all the letters in the secret word. ProcessAnswer belongs
to the Driver sprite, and you can see the full script in Figure 8-27 (left).

ProcessAnswer starts by resetting both the gotLetter flag and qmarkCount
to 0. It will increase qmarkCount by 1 for every unknown letter in the secret
word. The temporary variable, temp, which is used to construct the display
string after every guess, is initialized to an empty string. The pos variable is
used as a loop counter.

204 Chapter 8

secretWord=across
displayWord=??????

answer=r

Iteration char char temp

1
2
3
4
5
6

a
c
r
o
s
s

?
?
r
?
?
?

?
??
??r
??r?
??r??
??r???

Figure 8-27: The ProcessAnswer procedure

The loop examines each letter of secretWord, using pos as an index.
If the examined letter (saved in char) equals the guessed letter (saved in
Scratch’s built-in answer variable), the gotLetter flag is set to 1. Otherwise,
the char variable is set to the letter at the corresponding position in the
displayWord variable. Either way, the script adds char to the end of temp, as
illustrated in Figure 8-27 (right).

When the loop terminates, the displayWord variable will contain the
six letters to be displayed on the Stage, taking the user’s most recent guess
into account. The loop also tracks the number of question marks in the
display string. If there are none, then the user has successfully guessed
the secret word.

When ProcessAnswer returns, the NewGame message handler checks
gotLetter to see whether the player guessed correctly. If not, it will call
ProcessWrongGuess, shown in Figure 8-28.

This procedure broadcasts WrongGuess to notify the Hangman sprite to
show its next costume, and then it decrements the number of remaining
guesses by 1. If the user is out of guesses, the script reveals the secret word
and ends the game. Otherwise, it broadcasts an Update message to show how
many trials the player has left.

String Processing 205

Tell the Hangman sprite to show its next costume.

If the user still has more trials, tell the Helper
sprite to show the remaining number of trials.

Reduce the number of remaining trials by 1.

If the user has exhausted all trials.

Tell the Helper sprite to show the correct answer.

Then display an image that tells the user that he or
she has lost the game.

End the game.

Figure 8-28: The ProcessWrongGuess procedure

If the player’s letter was correct, the ProcessCorrectGuess shown in
Figure 8-29 should be called instead of ProcessWrongGuess.

 Tell the Helper sprite to show the
correctly guessed letter.

show the win costume and end the
game.

If there are no more letters to guess,

Figure 8-29: The ProcessCorrectGuess procedure

ProcessCorrectGuess broadcasts Update to show the letter the player
guessed correctly. It then checks the value of qmarkCount. If qmarkCount is 0,
the player has guessed all of the letters correctly, so the Driver sprite shows
its win costume and ends the game.

t ry i t ou t 8 -7

The Hangman program doesn’t validate the user input; you could enter a non-
alphabetic character or even an entire word . Modify the program so that it rejects
any invalid input by the user .

206 Chapter 8

Fraction Tutor
For our last example, we’ll present an educational game for teaching frac-
tions. The interface for this game is shown in Figure 8-30. The player can
select an operation (+, −, ×, or ÷) and click the New button to create a new
problem. When the player enters an answer and clicks the Check button,
the Teacher sprite (image of a woman) checks that answer and provides an
appropriate feedback message.

Read sprite

Operation sprite

Teacher sprite

New sprite

Check sprite

Digit sprite (invisible)

Figure 8-30: The user interface for the Fraction Tutor application

The application contains six sprites. Operation allows the player to
choose a mathematical operation. Read shows the answer entry button,
New shows the New button, and Check shows the Check button. The Teacher
sprite checks the player’s answer, and an invisible sprite named Digit stamps
the numbers that correspond to the current problem on the Stage.

When the player clicks the New sprite (the New button), it executes the
script shown in Figure 8-31. The script assigns random values between 1
and 9 to the numerator and denominator of both operands, which are repre-
sented by the four variables num1, den1, num2, and den2. It then broadcasts
a NewProblem message to tell the Digit sprite to stamp these numbers on the
Stage.

Set numerator and
denominator of the
first operand.

Set numerator and
denominator of the
second operand.
Tell the Digit sprite to
show these numbers.

Figure 8-31: The script for the New sprite

FractionTutor .sb2

String Processing 207

The Digit sprite has 12 costumes (named d1 through d12), as shown
in Figure 8-32 (right). When this sprite receives the NewProblem broadcast,
it stamps costumes representing the numerators and denominators of the
two operands. Figure 8-32 also shows the procedure that does the actual
stamping.

d1 d2

d3 d4

d5 d6

d7 d8

d9 d10

d11 d12

Example:
num1=3, den1=5
num2=7, den2=9

Figure 8-32: The function of the Digit sprite

The procedure uses nested if/else blocks to determine which costume
corresponds to the digit to be stamped. Note how the costume name for
digits 1 through 9 is formed using the join operator. After switching to
the correct costume, the Digit sprite moves to the specified (x,y) position
and stamps the image of the costume at that location.

When the new problem is shown, the user can click the Read button
to enter an answer. The script associated with this button is illustrated
in Figure 8-33. The part of the script that parses the player’s answer into
two tokens (numerator
and denominator) is simi-
lar to the one presented
in Figure 8-16 for extract-
ing the angle and distance
from answer in the Shoot
game and, therefore, is
not shown here. Check the
FractionTutor.sb2 file for the
complete procedure.

Extract the numerator and denominator from
answer and assign them to num3 and den3

Hide the sprite so that the
question is asked by the Stage
(instead of the button itself).

Figure 8-33: The script of the Read sprite

208 Chapter 8

First, the user is asked to enter an answer in fraction form (for example,
3/5 or –7/8). The script then extracts the numerator and the denominator
of the answer string (which are separated by the division sign) and assigns
them to the num3 and den3 variables, respectively. For example, if the user
enters –23/15, num3 will be set to –23 and den3 will be set to 15. After that,
the script broadcasts a GotAnswer message to tell the Digit sprite to show the
user’s answer on the Stage. When the Digit sprite receives this message, it
stamps the digits of num3 and den3 at the correct positions on the Stage
in the same way it displayed the numerators and denominators of the two
operands. You can check the file FractionTutor.sb2 for the details.

After entering an answer, the user can click the Check button to see if
the answer is correct. The script for the Check sprite broadcasts a CheckAnswer
message to inform the other sprites of the user’s request. This message is
trapped and processed by the Teacher sprite, which will execute the script
shown in Figure 8-34.

Give feedback to the user.

Compute the correct answer based
on the current operation, which is
determined by the costume number
of the Operation sprite. The four
procedures (Add, Subtract, Multiply,
and Divide) compute the numerator
(ansNum) and the denominator
(ansDen) of the correct answer.

Find the greatest common divisor
(GCD) of ansNum and ansDen in
order to put the answer in its
simplest form.

Reduce ansNum and ansDen by
dividing both of them by the GCD.

Figure 8-34: The CheckAnswer script

The current costume of the Operation sprite tells which operation pro-
cedure (Add, Subtract, Multiply, or Divide) to execute u. The operations
take num1, den1, num2, and den2 as inputs and set the values of ansNum and
ansDen, which represent the numerator and denominator of the correct
answer, respectively. The four procedures are shown in Figure 8-35.

After finding the answer, CheckAnswer needs to put it in its simplest
form. For example, 2/4 should be simplified to 1/2. To perform this reduc-
tion, the script first finds the greatest common divisor (GCD), also known
as the greatest common factor, of the numerator and denominator v.
(We’ll look at this procedure in a moment.)

String Processing 209

a c ad + cb
b d bd

+ =

a c ad cb
b d bd

−− =

a c ac
b d bd

× =

a c ad
b d bc

÷ =

Figure 8-35: The Add, Subtract, Multiply, and Divide procedures of the Teacher sprite

After finding the GCD, the script divides ansNum and ansDen by that
value w and calls GiveFeedback x to display whether or not the user’s
answer was correct.

Now let’s look more closely at the details of these procedures, starting
with the four operation procedures shown in Figure 8-35.

These procedures compute the result of performing an operation of
the form

num
den

num
den

ansNum
ansDen

1
1

2
2

, , ,+ − × ÷ =[]

and store the result in two variables (ansNum and ansDen) corresponding to
the answer’s numerator and denominator, respectively.

Let’s now move on to the FindGCD procedure, shown in Figure 8-36.

Set gcd to the lesser of abs(num1)
and abs(num2). For example, if
num1=–10 and num2=6, gcd will
be set to 6.

Start a loop to
check the numbers
6, 5, 4, 3,
Stop when num1
and num2 divide
evenly by the
checked number.

Figure 8-36: The FindGCD procedure of the Teacher sprite

210 Chapter 8

Let’s trace the operation of FindGCD when num1 = –10 and num2 = 6.
We need to find the largest positive integer that divides num1 and num2 with-
out a remainder. The procedure starts by setting gcd, the result, to the lesser
absolute value of the two numbers, −6 in our example. A loop then tests the
numbers 6, 5, 4, and so on, until both num1 and num2 divide evenly by the
checked number. This is the result we are after. In this example, gcd will be
set to 2 since both numbers (–10 and 6) divide by 2 without a remainder.

The last procedure to examine is the GiveFeedback procedure, which
compares the user’s answer with the correct answer and displays an appropri-
ate message, as shown in Figure 8-37. The figure also shows some examples
that demonstrate the different cases of the if/else structure.

Examples

ansNum

ansDen

Correct
 Answer

3

4

3

4

3

4

User
Answer
num3

den3

3

4

6

8

2

3

Figure 8-37: The GiveFeedback procedure of the Teacher sprite

Summary
String processing is an important programming skill. In this chapter, you
learned how to access individual characters of a string to combine them,
compare them, remove them, and shuffle them around.

We started with a detailed look at the string data type and how strings
are stored as sequences of characters. We then wrote several procedures that
demonstrated basic string manipulation techniques. After that, we used these
techniques to write several interesting and practical applications. The con-
cepts developed in these projects can be applied in many other areas, and
I certainly hope they’ll help you think of your own projects.

In the next chapter, you’ll learn about lists and how to use them to store
and manipulate a bunch of values. Equipped with this new data structure,
you’ll have all the tools you need to write professional programs in Scratch.

t ry i t ou t 8 -8

Modify the fraction tutor program to keep track of the number of correct and incor-
rect answers . Devise a scheme for calculating a score and showing it to the user .

String Processing 211

Problems
1. Write a program that asks the user to enter a word and then says that

word N times, where N is the number of letters in the input word.

2. Write a program that asks the user to enter a word. The program then
determines the number of occurrences of the letter a in the input word.

3. Write a program that reads a singular English noun from the user. The
program then produces the plural form of that noun. (Hint: Check
the last letter and the second from the last letter of the input word.) To
keep the program simple, consider only the following rule: If the word
ends in ch, x, or s, add es for the plural, otherwise just add an s.

4. Write a program that reads a single character (between a and z) from
the user and outputs the position of that character in the alphabet
(a = 1, b = 2, c = 3, and so on). Uppercase letters and lowercase letters
should be treated the same. (Hint: Define a variable named alpha that
holds the letters of the alphabet, as we did in Figure 8-9, and then use
a loop to find the position of the input character within the variable
alpha.)

5. Write a program that asks the user to enter a letter of the alphabet and
then displays the letter that precedes the input letter. (Hint: Use the
same technique used in the previous problem.)

6. Write a program that reads a positive integer from the user then finds
and displays the sum of its digits. For example, if the user enters 3582,
the program should display 18 (3 + 5 + 8 + 2).

7. Write a program that reads a word from the user and then displays the
letters in reverse using the say block.

8. Write a program that gets a number from the user and then inserts a
space between each pair of digits. For example, if the input number is
1234, the output string should be 1 2 3 4. (Hint: Construct the output
variable by joining the individual letters from the input number with
white spaces.)

9. In this problem, you’ll create a game that lets players compare frac-
tions. The user interface is shown on the right. When the New button is
clicked, the game randomly
picks two fractions to com-
pare. The user selects less
than (<), greater than (>), or
equal to (=) by clicking the
oper ator button. When the
user clicks the Check button,
the game checks the answer
and provides feedback. Open
the file CompareFractions.sb2
and add the necessary scripts
to complete the game.

Compare
Fractions .sb2

9
L i S t S

The programs we’ve written so far have used ordinary
variables to store single pieces of data. Such variables
are not as useful, however, when you want to store a
bunch of values, such as your friends’ phone numbers,
names of books, or a month of temperature readings.
For example, if you wanted your program to remember the phone numbers
of 20 of your friends, you’d need 20 variables! Certainly, writing and main-
taining a program with 20 variables would be tedious. In this chapter, we’ll
explore another built-in data type, called a list, which offers a convenient
way to group related values. Here’s what we’ll cover:

•	 How to create and manipulate lists

•	 Initializing and accessing individual elements in a list

•	 Basic sorting and search techniques

•	 Using lists to create powerful applications

First, I’ll explain how to make lists in Scratch, demonstrate the com-
mands you can use with them, and show you how to populate lists with data

214 Chapter 9

entered by a user. We’ll then discuss numeric lists and common operations
performed on them, such as finding the minimum, the maximum, and the
average value of their elements. After that, we’ll learn one algorithm for
sorting the elements in a list. We’ll end with several example programs that
demonstrate some real-world applications of lists.

Lists in Scratch
A list is like a container where you can store and access multiple values. You
can think of it as a dresser with many drawers, with each drawer storing a
single item. When you create a list, you
name it just as you would a variable. You
can then access the individual elements
of the list using their storage position in
the list. Figure 9-1, for example, depicts
a list named dayList that stores the names
of the seven days of the week.

You can refer to the items con-
tained in a list using their storage index
(or position). In Scratch, the first item
has an index of 1, the second item is 2,
and so on. For example, since Tuesday
is third in the list, it has an index of 3.
Therefore, you can refer to the third
 element of our dayList using a command
of the form “item 3 of dayList.”

Let’s jump right in and create some lists in Scratch. We’ll also look at
the commands that allow us to manage and manipulate lists in our pro-
grams and learn how Scratch responds to invalid list commands.

Creating Lists
Creating a list is almost identical to creating a variable. Select the Data
palette and click Make a List to bring up the dialog in Figure 9-2 (right).
Next, enter the name of the list (we’ll use dayList) and specify its scope.
Choosing the For all sprites option creates a global list that any sprite in
your application can access, while the For this sprite only option creates
a local list that belongs to the currently selected sprite. Local lists can
only be read (and written to) by the owner sprite.

When you click OK to confirm your input, Scratch creates a new empty
list and shows the list-related blocks, as illustrated in Figure 9-3. This is simi-
lar to what you’d see when you create a new variable. An empty list is a list
that does not contain any items.

You can use these new commands to manipulate the contents of your
list while your script is running. You can append new items, insert items
at specific positions, delete certain items, or replace the values of existing
items.

Sunday

Monday

Tuesday

...

Saturday

dayList List name

Item 1 of dayList

Item 2 of dayList

Item 3 of dayList

Item 7 of dayList

Figure 9-1: A list that contains the days
of the week

Lists 215

Name

Scope

Select the Data
palette and click

this button.

Figure 9-2: Creating a list in Scratch is similar to creating a variable .

List name. Use the checkbox to show or
hide the list’s monitor on the Stage.
Add a new item to the end of the list.

Remove the item at the specified index.

Insert an item at the specified index.

Replace the item at the specified index.

Return the item at the specified index.

Return the number of items in the list.

Does the list contain the specified item?

Show the list’s monitor on the Stage.

Hide the list’s monitor on the Stage.

Figure 9-3: Command and function blocks that you can use with lists

When a new list is created, Scratch also shows the list’s monitor on
the Stage, as illustrated in Figure 9-4. The list will initially be empty, so its
length starts at 0. You can use this monitor block to add entries to your list
as you design a program.

List name

List currently has zero
items.
Drag this corner to change
the monitor’s size.

Click this button to add
items to the list.

Figure 9-4: The monitor of a newly created list
is shown on the Stage .

If you know the data that you want to store in the list (as is the case for
our dayList), you can add it to the list at this point. Figure 9-5 shows how you
can add days to the dayList using its monitor.

216 Chapter 9

Click the plus sign seven times to
add space for the seven days.

Click inside the edit boxes and
type your data.

Figure 9-5: Populating the dayList

Click the plus sign at the lower-left corner seven times to create seven
entries and then enter a day of the week inside each edit box. Use the tab
key to navigate through the list items. Pressing tab once highlights the next
list item with a yellow border. Pressing tab another time highlights the edit-
able text of the selected item and removes the yellow border. If you click the
plus sign while the currently selected item is surrounded by a yellow border,
the new list item will be added after the current item; otherwise, it will be
added before the current item. Try navigating the list!

List Commands
Figure 9-3 described all the blocks that Scratch added when we created
our dayList. In this section, we’ll look more closely at these blocks to better
understand their function.

Add and Delete

The add command places a new item at the end of a list, while the delete
command removes an item from a specific position. Figure 9-6 shows these
commands in action.

The script first executes the delete command to remove the second
item of the list, which is “Orange.” The script then puts “Lemon” at the
end of the list using the add command.

t ry i t ou t 9-1

Populate dayList with the names of the weekdays, as shown in Figure 9-5 .

Lists 217

Before After

Drop-down
menu

Figure 9-6: A list before and after add and delete are used
to change its contents

The add command is straightforward, but let’s examine the delete
command more closely. You can type the index of the element you want to
delete directly into the block’s parameter slot, or you can click the drop-
down arrow. The drop-down menu (see Figure 9-6) shows three options:
1, last, and all. Select 1 to delete the first item (“Apple”) from the list, select
last to delete the last item (“Mango”), or select all to delete all the items
from the list.

Insert and Replace

Let’s say you want to store your friends’ names and phone numbers alpha-
betically in a list, just like the contacts list in your cell phone. As you make
your list, you need to insert each friend’s contact information at the proper
position. Later, if one friend gets a new phone number, you’ll need to edit
the list to enter it. The insert and replace commands can help you with
these tasks. Figure 9-7 shows an example of using the insert and replace
commands with our phone list.

Before AfterDrop-down
menu

We used the replace
command to change
Kim’s phone number.

Mark is now at the
4th position. Paul is
pushed down to the

5th position.

Figure 9-7: Using the insert and the replace commands to update a list of telephone numbers

The replace command overwrites the current string at slot number
3 with Kim’s new phone number. The insert command places the phone
number of a new friend, Mark, at slot number 4 in the list. Notice that the
existing elements moved down one slot to make room for the new entry.

Clicking the item number’s down arrow in both the replace and the
insert commands shows a drop-down menu of three options: 1, last, and
random (see Figure 9-7). If you select random, the selected command will
choose an item number randomly. You’ll see some useful applications of
this feature later in this chapter.

218 Chapter 9

Accessing List Elements

As we mentioned earlier, you can access any element in a list using that ele-
ment’s index. For example, the script in Figure 9-8 demonstrates using the
item of block to access the elements of our dayList. The script uses a vari-
able named pos (short for position) to iterate through each item of the list,
showing the contents via the say command.

Prepare to access the first item.

We have seven days in the list.

Say the list item with an index equal to pos.

Increment pos to access the next item.

Figure 9-8: This script causes the sprite to display the seven days of our dayList .

The script initializes the value of pos to 1 so it can access the first ele-
ment in dayList, and then the script enters a loop. The loop’s repeat count is
set to 7, the number of elements in our list. On each pass, the loop will say
the list item with an index equal to pos and increment the value of pos to
access the next element. In other words, we’re using pos as an index to pin-
point a specific element in the list.

The Contains Block

You can check whether a certain string is in a list by using contains, a
Boolean block that returns true or false based on whether or not the list
contains your string. The script shown in Figure 9-9 illustrates one use of
this block. Since dayList contains the string “Friday”, the say command
inside the if block will be executed.

n o t e The contains block is case insensitive. The block dayList contains friDAY, for
example, would also evaluate to true.

t ry i t ou t 9-2

Replace the literal number 7 in the repeat loop with the length of dayList block .
This is what you’d normally do to step through a list if you didn’t know how many
items it contained . Also, select random from the first drop-down menu in the item
of block . This should cause the script to display an item from the list at random .

Lists 219

Figure 9-9: Using the contains block to check whether a string is
in a list

Bounds Checking
The four list blocks (delete, insert, replace, and item of) require an
input parameter that specifies the index of the item you want to access.
For example, to delete the seventh element of our dayList, we use delete 7
of dayList. But what do you think will happen if you use an invalid index
with one of these blocks? For example, how would Scratch respond if you
asked it to delete the eighth element of our dayList (which only contains
seven elements)?

Trying to access an element past the boundaries of a list is, technically,
an error. Rather than display an error message or abruptly terminate your
program, however, Scratch silently tries to do something sensible with the
offending block. For this reason, the absence of error messages does not nec-
essarily mean the absence of errors. Problems may still exist in your code, and
when they do, you still need to fix them. Scratch won’t complain about invalid
indexes in your blocks, but the outcome usually won’t be what you intended.
Table 9-1 shows what can happen when you try to access dayList using an out-
of-range index.

Table 9-1: Unexpected Results from Bad List Indexes

Command or Function Block Result

Returns an empty string because dayList has only seven items .
The same thing happens if you use an index less than 1 .

Scratch ignores the .9 and returns the first item of dayList, which is
“Sunday” . Similarly, if you asked for item 5 .3, Scratch would return
the fifth item, “Thursday” .

Scratch ignores this command because it attempts to create a gap
in the list . The list remains unchanged .

This has the same effect as the add command . It adds “Newday”
to the end of the list .

The command is ignored (because dayList has only seven elements),
and the list remains unchanged .

220 Chapter 9

The examples in Table 9-1 demonstrate that, although Scratch’s blocks
try to do something sensible when their inputs are invalid, they won’t neces-
sarily do the right thing. You have to provide your program with the right
inputs so it works the way you want it to.

Up to this point, our examples have used simple lists that we created
manually using their monitors. The question now is this: What if you don’t
know the contents of a list when you write your program? For example, you
may need to make a list of user-entered numbers or fill a list with random
values each time the program is run. We’ll tackle this problem next.

dynamic Lists
Lists are powerful because they can grow or shrink dynamically as a pro-
gram is running. Let’s say, for example, that you are writing a grade book
application, in which teachers can enter students’ test scores for further
processing. (The teacher might need to find the maximum score, mini-
mum, average, median, and so on for a class.) However, the number of
students may be different for every class. The teacher may need to enter 20
scores for Class 1, 25 scores for Class 2, and so on. How can your program
know that the teacher has finished entering the scores? This section will
answer that question.

First, we’ll introduce two ways to populate lists with data from a user.
We’ll then explore numeric lists and look at some of the common opera-
tions performed on them. Once you understand the fundamental concepts,
you’ll be ready to adapt these techniques to your own applications.

Filling Lists with User Input
There are two common ways to fill a list
with data entered by a user. In the first
method, your program begins by asking
how many entries there will be and then
starts a loop to collect the user’s input.
A script that demonstrates this technique
is shown in Figure 9-10.

Once the user tells this script how
many scores to expect, the script starts
a loop with a repetition count equal to
the user’s input. Each iteration of the
loop then asks the user for a new score
and appends that value to the list, called
scoreList.

The second way to dynamically populate a list is to have the user enter
a special value (known as a sentinel) to mark the end of the list. Of course,
you should choose a sentinel that won’t be mistaken for a member of the
list. If you’re expecting a list of names or positive numbers, for example,
a sentinel of –1 is a good choice. If, on the other hand, the user will enter
negative values, then –1 won’t be a good sentinel. Using a sentinel of –1 will

Figure 9-10: Asking the user how
many scores will be entered

Lists 221

work for our scoreList, and the script shown in Figure 9-11 uses this sentinel
to know when the user is done entering values.

The contents of scoreList
if the user enters
85, 100, 95, –1

Figure 9-11: Using a sentinel to control list growth

In each iteration of the loop, the script prompts the user to enter a
number and compares that value to the sentinel. Note that the script speci-
fies the sentinel (–1 in this case) in its prompt to the user. If the user enters
–1, then the script stops because it knows the user is done entering scores.
Otherwise, the input value is appended to the list, and the user is prompted
for another entry. Figure 9-11 shows how scoreList should look if the user
enters three scores followed by the sentinel.

Creating a Bar Chart
As a practical example of collecting user input with lists, let’s write an appli-
cation that draws a bar chart (also called a histogram) from the user’s num-
bers. For simplicity, we’ll only accept five numbers between 1 and 40. Once
the program has received all five numbers, it will draw five bars with heights
proportional to the entered values. The user interface for our chart maker
is illustrated in Figure 9-12.

Driver sprite

Painter sprite
(invisible)

Frame sprite

Variables n1, n2,
n3, n4, and n5

Figure 9-12: The Bar Chart application

This application contains three sprites. The Driver sprite controls the
flow of the application; it contains scripts that accept user input, populate
the list, and tell the Painter sprite to start drawing. The Painter sprite is an
invisible sprite that draws the bar chart. The Frame sprite is purely cosmetic;
it hides the bottom of each bar to make it look flat; without it, the bottoms

BarChart .sb2

222 Chapter 9

of the vertical bars would have rounded tips. The numerical values for
the five bars are shown using five variables, named n1 through n5, whose
monitors are located at the right positions on the Stage. When you click
the green flag icon to start the application, the Driver sprite runs the script
shown in Figure 9-13.

Hide the Driver sprite,
call ShowValues again
to update n1 through n5
from numList, and tell
Painter to draw the
five bars.

Clear the Stage and
show the Driver sprite.

Empty numList and call
ShowValues to set n1
through n5 to empty
strings.

Start a loop to read five
numbers from the user
and store them in
numList.

Figure 9-13: The main script for the Driver sprite

First, the Driver sprite appears on the Stage and clears any previous pen
marks u. That way, if there is a bar chart already, it will be cleared before
the new one is drawn. The script then clears numList so we can use it to col-
lect new entries from the user and calls ShowValues v to set n1 through n5
so their monitors will be blank.

When the Stage is prepared, the script enters a repeat loop w, which
iterates five times. Inside the loop, the Driver asks the user to enter a num-
ber and appends that number to numList. After collecting all five numbers
from the user and saving them in numList, the Driver sprite hides itself x
to make room for the bar chart. It then calls ShowValues again to update
n1 through n5 with the user’s new values and broadcasts Draw so the Painter
sprite will draw the five bars.

Before examining how the Painter draws
the bars, let’s look at the ShowValues pro-
cedure shown in Figure 9-14.

ShowValues simply sets the variables
n1 through n5 equal to their correspond-
ing entries in numList. Since the first call
to ShowValues is made immediately after
clearing numList, all five variables will con-
tain empty strings after this call. This results
in clearing the five monitors on the Stage, Figure 9-14: The ShowValues

procedure

Lists 223

which is exactly what we want. When numList contains data from the user,
calling ShowValues displays the data in those same monitors.

Now let’s explore the Draw procedure, which is executed when
the Painter sprite receives the Draw message. You can see this script in
Figure 9-15.

−1
64 −8
2 0 82 16
4

22
4

pi
xe

ls

Figure 9-15: The Draw script of the Painter sprite

The sprite first sets the pen color. Then it sets the pen’s size to a large
value to draw the thick bars. To prepare for drawing the five vertical bars,
the sprite points in the up direction u.

The script starts a repeat loop to draw the five bars v. We knew the
x -position of each bar in advance, so we created a list named xPos to store
those values (also shown in the figure). During each iteration of the loop,
the Painter sprite moves to the x -position for the current bar, puts its pen
down, and then moves up to draw a vertical line.

The height of each line is
 proportional to the correspond-
ing value in numList. Our chart
area on the Stage is 224 pixels tall,
and since 40 is the highest value,
an input of 40 should have a bar
as tall as the chart. To find the
height (in pixels) for any number
in numList, we need to multiply that
number by 5.6 (that is, 224/40).
Figure 9-16 shows the output of
the application after getting some
data from the user. Note that the
Frame sprite covers the rounded
tip of the wide drawing pen so
the bars look flat at the bottom.

Figure 9-16: A sample output of the Bar
Chart application

224 Chapter 9

numerical Lists
Lists of numbers appear in many practical applications. We can have lists of
test scores, temperature measurements, product prices, and more. In this
section, we’ll explore some common operations you might want to perform
on numerical lists. In particular, we’ll write procedures for finding the
maximum or minimum value and for finding the average of the numbers
stored in a list.

Finding Min and Max
Suppose you’re a teacher and you need to know the highest score from
the last exam your class took. You could write a program to compare all of
those test scores and find the maximum value. Our first example, shown in
Figure 9-17, finds the highest number in a list named score.

The FindMax procedure starts by setting the value of the maxScore vari-
able equal to the first number in the list. It then starts a loop to compare
the remaining numbers in the list with the current value of maxScore. Every
time it finds a value greater than maxScore, it sets maxScore equal to that
value. When the loop terminates, the value stored in maxScore will be the
largest value contained in the list.

When the loop terminates, the value
stored in maxScore will be the largest
value contained in the list.

Assume that the first element in the list
is the maximum, until we discover

Start a loop to compare the remaining
numbers of the list (starting with the
second number) with maxScore.

Every time we find a value in the list
that is greater than maxScore, we set
maxScore equal to that value.

otherwise.

Figure 9-17: Finding the maximum number in a list

FindMax .sb2

t ry i t ou t 9-3

Run this application several times to understand how it works . Change the script
so that each bar will be drawn in a different color . Hint: Create a new list, named
color, for the Painter sprite that stores the color number of the five bars and use
the following command before drawing each bar:

Lists 225

Finding the minimum value in a list follows a similar algorithm. We
start by assuming that the first element in the list is the smallest element
and then use a loop to check the remaining elements. Each time we find
a smaller value, we update the variable that holds the minimum value.

Finding the Average
In our next example, we’ll write a procedure that computes the average
score of the numbers stored in our score list. You can find the average of
a sequence of N numbers by first finding their sum and then dividing the
total by N. The procedure shown in Figure 9-18 does exactly that.

Divide the sum by the number of
scores in the list.

Loop through the scores stored in
the list and calculate their sum.

This variable is used to hold the
total sum.

Note: You can also use the change sum by block.

Figure 9-18: Finding the average value of a list of numbers

The FindAverage procedure uses a loop to step through the scores
stored in the list, add them together, and store the result in a variable
named sum. (This variable is initialized to 0 before the start of the loop.)
When the loop terminates, the script calculates the average by dividing
sum by the number of scores, and it saves the result in a variable named
average.

n o t e Pay special attention to the way we accumulated the sum variable inside the
loop. This pattern, known as the accumulator pattern, comes up very often
in programming.

In the next section, we’ll explore how to search and sort lists, two com-
mon problems in programming. I’ll also walk you through some simple
algorithms for performing each operation.

FindAverage .sb2

t ry i t ou t 9- 4

Use what you learned in this section to create a procedure called FindMin that
finds the minimum value of the score list .

226 Chapter 9

Searching and Sorting Lists
Suppose you have a list of contacts that isn’t in any particular order. If you
wanted to organize the contacts, you might sort them into alphabetical order
based on their names. If you need to know someone’s phone number and
you have their last name, you’ll need to search the list to see if it contains
that person’s contact information. The goal of this section is to introduce
basic programming techniques for searching and sorting lists.

Linear Search
Scratch’s contains block provides an easy way to check whether a list contains
a specific item. If, in addition, we’d like to know the position of the item
being searched for in a list, then we have to perform the search ourselves.

This section will explain one method for searching lists, called a linear
search (or sequential search). The method is easy to understand and imple-
ment, and it works on any list, whether it is sorted or not. However, because
a linear search compares the target value with every element in the list, it
can take a long time if your list is large.

To illustrate, suppose you’re searching for a specific item in a list
named fruit. If the list contains the item you are looking for, you also need
to know the exact position of that item. The SearchList procedure shown in
Figure 9-19 performs a linear search on the fruit list to give us the answers
we seek.

Figure 9-19: The SearchList procedure

SearchList .sb2

t ry i t ou t 9-5

Combine FindAverage, FindMax, and FindMin into one procedure (called
ProcessList) that will display the average, maximum, and minimum values for
the score list all at the same time .

Lists 227

Starting with the first element, SearchList compares the fruits in our
list, one by one, with the one we’re looking for, which is represented by the
target parameter. The procedure stops if it either finds the value or reaches
the end of the list. If the script finds the value we want, the pos variable will
contain the location where the item was found. Otherwise, the procedure
sets pos to an invalid value (–1 in this case) to indicate that the target item
was not in the list. Figure 9-20 shows an example of calling this procedure
and its corresponding output.

Figure 9-20: Using the SearchList procedure

Examining the value of pos tells the caller two things: (a) whether
the item we’re looking for is in the list or not and (b) if the item exists, its
exact position. Running this script sets pos to 4, indicating that “Peach” was
found in the fourth position of the fruit list.

Frequency of Occurrence
Suppose that your school conducted a survey about the quality of its cafete-
ria food. Students rated the taste on a 1 to 5 scale (1 = poor, 5 = excellent).
All votes have been entered into a list, and you are asked to write a program
to process this data. For now, the school only wants to know how many stu-
dents completely dislike the food (that is, how many gave it a rating of 1).
How would you write such a program?

Clearly, your program needs a
procedure that counts how many
times the number 1 appears in the
list. To simulate the students’ votes,
let’s use a list that contains 100 ran-
dom votes. The procedure that popu-
lates the list is shown in Figure 9-21.
This procedure adds 100 random
numbers between 1 and 5 to a list
called survey.

Now that we have a list of votes, we can count how often a given rating
appears in that list. We’ll do this with the GetItemCount procedure, shown
in Figure 9-22.

ItemCount .sb2

Figure 9-21: The FillList procedure

228 Chapter 9

Increment the loop counter to access the
next element.

Keep track of the number of times the
target item (target) is found in the list.

Set the loop counter (n) to 1 to access
the first element in the list.

Start a loop to search for the target item.

If the current list item equals the target
item, increment itemCount by 1.

Figure 9-22: Counting how many times an item appears in a list

The target parameter represents the item to search for, while the
itemCount variable tracks the number of times the target item is found.
The procedure starts by setting itemCount to 0, and then it starts a repeat
loop to search the list for the value specified in target. During each itera-
tion of the loop, the procedure checks the list item at the location indexed
by the loop counter, n. If that item equals the target, the script increases
itemCount by 1.

To give the principal information about disgust with the cafeteria’s
food, we just need to call GetItemCount with an argument of 1, as shown
in Figure 9-23.

Figure 9-23: Using the GetItemCount procedure

t ry i t ou t 9-6

After you provide the answer to this question, the principal suddenly becomes curi-
ous about how many students gave the cafeteria an excellent rating . The principal
also wants to know how many students participated in the survey . Modify the pro-
gram and run it again to give the principal the additional information .

Lists 229

Bubble Sort
If you have a set of names, game scores, or anything else that you want to
show in a particular order—alphabetically, from largest to smallest, and
so on—you’ll have to sort your list. There are many ways to sort lists, and a
bubble sort is one of the simplest algorithms. (The name refers to how values
“bubble” up through the list to their correct positions.) In this section, we’ll
learn about bubble sort and write a Scratch program to perform this kind
of sort for us.

Let’s say that we need to sort the list of numbers [6 9 5 7 4 8] in descend-
ing order. The following steps illustrate how the bubble sort algorithm works.

1. We’ll start by comparing the first two elements in the list. Since 9 is
larger than 6, we can swap their positions, as shown below.

original list list after swapping the
first two elements

2. Now we can compare the second and third elements, which are 6 and 5.
Since 6 is larger than 5, the two numbers are already in order, and we
can move on to the next pair.

3. We’ll repeat this process to compare the third and fourth, fourth and
fifth, and finally the fifth and sixth elements. Take a look at the list
after these three comparisons, shown below.

Swap

No

Change
Swap

4. This pass of the bubble sort is over, but our list still isn’t in the right
order. We need to perform a second pass, starting from step one. Once
more, we’ll compare each pair of elements and swap them if needed.
Here’s the list after a second pass:

No

Change
Swap

No

Change Swap

No

Change

BubbleSort .sb2

230 Chapter 9

5. We’ll repeat the bubble sort process until no numbers are swapped dur-
ing a pass, meaning that our list is in order. The final three passes of
the algorithm are shown below:

No

Change

No

Change

No

Change Swap

No

Change

Pass 3

No

Change

No

Change

No

Change

Pass 4

Swap

No

Change

No

Change

No

Change

No

Change

Pass 5
No

Change

No

Change

Now that you’ve seen how bubble sort works, let’s implement it in
Scratch. The script, shown in Figure 9-24, has two loops. The inner loop
cycles through a list, comparing and swapping as needed, and sets a flag
(named done) to 0 when another pass is needed. The outer loop repeats as
long as the done flag is 0, because that value means we aren’t done sorting.
If the inner loop completes one pass without swapping elements, the outer
loop will exit, ending the procedure.

Let’s explore this procedure in more detail. Since we haven’t done any
sorting yet, it sets done to 0 u. The outer loop uses a repeat until block to
pass through the list until it is sorted (that is, until done becomes 1) v. At
the beginning of every pass, this loop sets done to 1 w (that is, it assumes
that we won’t make any swaps). It also sets pos to 1 to start the sort with the
first number.

The inner loop then compares each pair of elements in the list. The
loop needs to perform N – 1 comparisons x, where N is the number of
items in the list.

If the item at index pos+1 is greater than the item at pos y, the two
need to be swapped. Otherwise, the procedure adds 1 to pos so it can com-
pare the next pair of items. If we do need to swap, this procedure does so
with the aid of a temporary variable named temp z.

Once the current pass through the list ends, the inner loop sets done
back to 0 if it swapped numbers or leaves done=1 if it made no changes {.
The outer loop will continue until the list is sorted.

Lists 231

O
ut

er
 L

oo
p

In
ne

r L
oo

p

Figure 9-24: The BubbleSort procedure

Finding the Median
Now that we know how to sort a list, we can easily find the median value of
any sequence of numbers. Recall that the median is the middle value in a
sorted set of numbers. If we have an odd number of items, we can just take
the middle number. If we have an even number, the median is the average
of the two middle numbers. We can describe the median for a sorted list of
N items as follows:

median

N
N

=

+
item at index if is odd

average of items at

1
2

NN N
N

2 2
1and if is even+

A procedure that performs this calculation is shown in Figure 9-25. It
assumes the list is in order.

Median .sb2

t ry i t ou t 9-7

Make a list of names instead of numbers and use the bubble sort script to put the
list in order . Does the sort still work as it should? Also, what changes do you need
to make to the procedure to make it sort in ascending order?

232 Chapter 9

Even number
of items.

Odd number
of items.

Find the average of
the two middle
numbers.

The median is the
middle number.

Figure 9-25: Finding the median value of a sorted list of numbers

The procedure uses an if/else block to handle the two cases of even and
odd lists. If the number of items in the list divides by 2 with no remainder
(that is, the list has an even number of items) u, the median variable is cal-
culated as the average of the middle two numbers v. Otherwise, the list has
an odd number of items w, and the median variable is set equal to the num-
ber in the middle of the list x.

We’ve covered a lot of ground so far, so it’s time to apply our newfound
knowledge to something more challenging. The rest of this chapter walks
through several examples that demonstrate how to use lists in more com-
plex applications.

Scratch Projects
In this section, you’ll explore practical Scratch projects that highlight dif-
ferent aspects of lists. I’ll also introduce some new ideas and techniques
that you can use in your own creations.

The Poet
Let’s kick off this chapter’s projects with a poem generator. Our artificial
poet selects words randomly from five lists (article, adjective, noun, verb, and
preposition) and combines them according to a fixed pattern. To give our
poems a central theme, all the words in these lists are somehow related to
love and nature. (Of course, we might still end up with some silly poetry,
but that’s just as fun!)

Poet .sb2

Lists 233

n o t e The idea of this program is adapted from Daniel Watt’s Learning with Logo
(McGraw-Hill, 1983). You’ll find the full word lists we’re using in the Scratch file
for this project, Poet.sb2.

Each poem is composed of three lines that follow these patterns:

•	 Line 1: article, adjective, noun

•	 Line 2: article, noun, verb, preposition, article, adjective, noun

•	 Line 3: adjective, adjective, noun

With those constructions in mind, let’s look at the procedure that
builds the first line of the poem, shown in Figure 9-26.

Figure 9-26: “Writing” the first line of a poem

This script selects a random word from the article list and stores it in line1.
Then the script appends a white space, a random word from the adjective
list, another white space, and a random word from the noun list. Finally, the
poet sprite says the complete line. I don’t show the procedures for the other
two lines of the poem here because they’re very similar, but you can open
up Poet.sb2 to view them.

Here are two poems created by our machine poet:

each glamorous road
a fish moves behind each white home
calm blue pond

every icy drop
a heart stares under every scary gate
shy quiet queen

t ry i t ou t 9-8

Open Poet.sb2 and run it several times to see what this machine poet is capable of
authoring . Then change the program so that it uses three sprites, with each sprite
responsible for one line of the poem, allowing you to read the whole poem on the
Stage at once .

Poet .sb2

234 Chapter 9

Quadrilateral Classification Game
Our next project is a simple game that will help you explore different kinds
of quadrilaterals. The game shows one of six shapes (parallelogram, rhom-
bus, rectangle, square, trapezoid, or kite) on the Stage and asks the player to
classify that shape by clicking the correct button, as illustrated in Figure 9-27.

Driver sprite

Btn1 sprite
Btn2 sprite
Btn3 sprite
Btn4 sprite
Btn5 sprite

Btn6 sprite

Costumes of
the Driver

sprite

1

2

3

4

5

6

Figure 9-27: The user interface for the quadrilateral classification game

The game contains seven sprites: six for the answer buttons and a sev-
enth (named Driver) that contains the main script. As shown in Figure 9-27,
the Driver sprite has six costumes that correspond to the six quadrilaterals
in the game. When the green flag
icon is clicked, the Driver sprite
executes the script shown in Fig-
ure 9-28 to start the game.

First, the Driver sprite moves
to the top drawing layer u so that
no buttons will obscure it. In the
main loop of the game v, the script
shows a random quadrilateral on
each pass with ShowShape w. After
showing the quadrilateral, the script
sets the global variable choice to
0 to indicate that the user hasn’t
answered yet x.

The script then waits y until choice changes to a nonzero number, which
will happen when the player clicks one of the six answer buttons. When the
player guesses a shape, the script calls CheckAnswer z to tell the player
whether or not that answer was correct.

Now that you know how the main script works, let’s look at the
ShowShape procedure, shown in Figure 9-29.

First, ShowShape moves the Driver sprite to the center of the stage and
points it in a random direction u. It assigns the shape variable a random
value from 1 through 6 and switches the sprite’s costume v to show a quad-
rilateral for the player to identify.

QuadClassify
 .sb2

Figure 9-28: The main script of the Driver
sprite

Lists 235

Figure 9-29: The ShowShape procedure of the Driver sprite

To keep the background’s grid visible, ShowShape sets the transpar-
ency level w to a random value between 25 and 50. To give the illusion that
it is coming up with a new shape every round, the procedure also sets the
color effect to a random value to change the color of the costume x and
resizes the sprite to 80%, 90%, ... , or 150% of its original size y.

Next, we’ll look briefly at the scripts for the six button sprites, shown
in Figure 9-30. They’re identical except for the value assigned to the choice
variable.

Script for the Parallelogram button Script for the Rhombus button Script for the Kite button

...
Figure 9-30: Scripts for the button sprites

These one-line scripts each set the value of choice to a different num-
ber depending on which button the player presses. Once choice contains the
player’s answer, the CheckAnswer procedure, illustrated in Figure 9-31, can
compare it with the value of shape, which specifies the type of the drawn
quadrilateral.

If choice and shape are equal, then the player’s answer is correct.
Otherwise, the answer is wrong, and the sprite will say the right shape.
CheckAnswer uses the shape variable as an index to a list named quadName,
which is also shown in Figure 9-31, to get the correct name of the displayed
shape.

t ry i t ou t 9-9

Open QuadClassify.sb2 and run it several times to understand how it works . As
written, this game runs forever . Modify the program to add a game-end criterion .
Also, keep track of the number of the player’s correct and incorrect answers .

QuadClassify
 .sb2

236 Chapter 9

Figure 9-31: The CheckAnswer procedure

Math Wizard
This application demonstrates two ways to make lists even more useful.
We’ll explore how to use lists to store nonuniform records (that is, records
with different sizes) as well as how to use one list as an index to another. A
record is just a collection of related data about a person, place, or thing. In
our case, each record consists of a puzzle’s answer along with the instruc-
tions for that puzzle. Whereas each puzzle has a single answer, the number
of instructions varies from one puzzle to another.

Our math wizard asks the user to think of a “secret” number and per-
form a sequence of mathematical operations on it (double the number,
subtract 2, divide the answer by 10, and so on). At the end, after the player
performs all these calculations, the wizard uses magical powers to tell the
user what number he has, even though the wizard does not know the user’s
initial number. Table 9-2 illustrates how the game works.

Table 9-2: How the Math Wizard Works

Wizard’s Instruction Your Number

Think of a number . 2

Add 5 . 7

Multiply by 3 . 21

Subtract 3 . 18

Divide by 3 . 6

Subtract your original number . 4

After the last instruction, the wizard will tell you that following the
instructions has given you the number 4, even though the game doesn’t
know that you started out with 2. Try this puzzle with different numbers
to figure out the wizard’s trick!

The interface of the application is shown in Figure 9-32.

MathWizard .sb2

Lists 237

Wizard sprite

OK sprite

New sprite

Figure 9-32: The user interface for the Math Wizard application

The application contains three sprites: the Wizard sprite, which gives
the instructions to the player, and the OK and New sprites, for the OK and
New Game buttons, respectively. It also uses the two lists illustrated in
Figure 9-33.

Answer of first puzzle

Instructions for first puzzle

End of first puzzle

Answer of second puzzle

...

Figure 9-33: The two lists used by the Wizard sprite

The instr list (right) contains 11 puzzle records. Each record includes
(a) the answer of the puzzle, (b) the instructions, and (c) an empty ele-
ment to mark the end of that record. The entries in the list on the left
(named index) identify the starting index of each puzzle in the instr list.
For example, the second element in the index list is 9, which means the
record of the second puzzle starts at the ninth position in the instr list, as
illustrated in Figure 9-33. Let’s outline a strategy for developing this game:

1. When the user starts a new game, select a random number between 1
and 11 (because our game currently contains 11 puzzles).

238 Chapter 9

2. Consult the index list for the starting position of the selected puzzle’s
record. For example, if the second puzzle is selected, the index list tells
us that the record of this puzzle starts at index 9 in the instr list.

3. Access the instr list at the index found in Step 2. The first element at
that index is interpreted as the answer of the puzzle. The following ele-
ments represent the instructions that the wizard will say.

4. Let the wizard say the puzzle instructions one by one until encounter-
ing the empty element, which signifies the last instruction. The wizard
should wait for the user to press the OK button before saying a new
instruction.

5. Reveal the answer of the puzzle.

Now that we know how the game should work on a high level, let’s look
at the scripts for the two buttons, shown in Figure 9-34.

Script for the New Game button Script for the OK button

Figure 9-34: The scripts for the two button sprites

The New Game button broadcasts the NewGame message when clicked.
When the OK button is clicked in response to an instruction, the sprite
sets clicked to 1 to inform the Wizard sprite that the player is done with the
instruction she was asked to perform. When the Wizard sprite receives the
NewGame message, it executes the script shown in Figure 9-35.

Select one of the 11 puzzles at random.

Find the starting position of the selected
puzzle’s record in the instr list.

Read the answer of the selected puzzle.
Point to the first instruction of the
selected puzzle. Then start a loop to
say the puzzle’s instructions in order.
End the loop when the empty element
is detected.

Say one instruction and then wait for
the player to click OK. When the
player clicks OK, change pos by 1
to point to the next instruction.

Clear previous answer and initialize
the clicked variable to 0.

Say the puzzle’s answer.

Figure 9-35: The NewGame script of the Wizard sprite

Lists 239

NewGame starts by clearing the speech bubble from the previous puzzle
(if any) and initializing the clicked variable to 0 u. It then saves the number
of the randomly selected puzzle in a variable called puzzleNum v. After that,
it reads the starting position of the selected puzzle from the index list and
saves it in the pos variable w. The script then uses pos to read the answer
of that puzzle and saves it in puzzleAnswer x. Next, the script adds 1 to pos
so it points to the first puzzle instruction, and it starts a repeat until loop
to say the puzzle’s instructions in order y. After saying each instruction,
the script waits for the clicked variable to be set to 1 before moving to the
next instruction z. When the loop finds an empty element, it exits, and the
script says the puzzle’s answer {.

Flower Anatomy Quiz
In this section, I’ll use a quiz on the parts of a flower to demonstrate
how to build simple quizzes in Scratch. Figure 9-36 shows our example
application’s interface at the beginning of the quiz and after the program
checks the user’s answers. Anyone taking the quiz will enter the letters to
match the labeled parts of the flower and then click the Check button to
check the answers. The program compares the user’s answers with the cor-
rect ones and provides feedback using the green check mark and the red X
icons next to each answer.

User interface
 after clicking the

Check sprite
Reset sprite

Letter
sprite

YesNo
sprite

Check button

Figure 9-36: The user interface for the flower quiz

This quiz uses three lists. The first (named correctAns) contains the let-
ters that correspond to the right answers for the nine parts of the quiz. The

FlowerAnatomy
 .sb2

t ry i t ou t 9-10

If you delete one of the puzzles or change the number of instructions for some
puzzles, then you would need to rebuild the index list to match up with the instr
list . Write a procedure that automatically populates the index list based on the
 current contents of the instr list . The key is to search for the empty strings in the
instr list, as these indicate the end of one record and the start of the next record .

240 Chapter 9

second list (named ans) contains the user’s input, and the third list (named
cellYCenter) contains the 11 vertical positions used by the Letter and the YesNo
sprites (so they know where they should stamp their costumes). When the
user clicks the mouse over any of the answer boxes, the Stage sprite detects
the mouse click and asks for an answer. The Stage sprite updates the cor-
responding element of the ans list to match what the user entered and
stamps that letter over the answer box. Open FlowerAnatomy.sb2 to read the
scripts that read and display the user’s answers.

When the user clicks the Check button, the YesNo sprite, which has the
costumes for the check mark and X images, executes the script shown in
Figure 9-37.

Start a loop to compare all
answers.

Get letter of the correct answer.

Get letter of the user’s answer.

If the answer is correct, switch
to the check mark costume.
Otherwise, switch to the X-mark
costume.

Move to the appropriate position
on the Stage, and stamp the
costume.

Point to the next answer.

Figure 9-37: The Check procedure of the YesNo sprite

The script compares the elements of the correctAns and the ans lists one
by one. If the two values are equal, it stamps a check mark to say the user
was correct. Otherwise, it stamps the red X where the user’s answers were
wrong. Either way, Check consults the cellYCenter list to get the correct posi-
tion for stamping the image. See Try It Out 9-11 on the opposite page.

Other Applications
The extra resources you downloaded from the book’s website (http://
nostarch.com/learnscratch/) contain three more applications that you can
explore on your own, with full explanations. The first application is a two-
player game about sorting fractions and decimals. Each player gets 5 ran-
dom cards from a deck of 31 cards. Each player is then dealt one card from
the remaining set. You can either discard the new card or drag it over one
of your current five, replacing the old one. Whoever arranges five cards in
ascending order first wins the game.

SayThat
Number .sb2

Lists 241

The second application is a program that spells whole numbers. It
prompts the user to input a number and then says that number in words.
If the user inputs 3526, for example, the program will say “three thousand
five hundred twenty six.” The idea is to break the number, from right to left,
into groups of three digits. Each group is then spelled out with a multiplier
word (thousand, million, and so on), if needed.

The third program demonstrates the sieve of Eratosthenes, an algorithm
for finding all prime numbers less than 100.

Summary
Lists are extremely useful in programming, and they provide a convenient
way to store multiple elements. In this chapter, we explored creating lists
in Scratch, learned the commands we can use to deal with them, and prac-
ticed populating lists dynamically with data entered by the user.

We also examined numerical lists and demonstrated how to find the
minimum, the maximum, and the average value of their elements. After
that, we learned simple algorithms for searching and sorting lists. We con-
cluded the chapter with several programs that demonstrated the use of lists
in practical applications.

SortEmOut .sb2

Sieve .sb2

t ry i t ou t 9-11

Open this application and test it . Then, think of other quizzes in different subject
areas that you can create and implement them . One example, shown below, is
provided in the file USMapQuiz.sb2 . Open this file and complete the missing parts
to make this quiz work .

a

b
c

d

e

f

g

h

i

USMapQuiz .sb2

242 Chapter 9

Problems

1. Create a list that contains the first 10 prime numbers. Write a script to
display these numbers using the say block.

2. Create three lists to store personal records. The first list stores names,
the second list stores birth dates, and the third list stores phone num-
bers. Write a program that asks the user the name of the person whose
contact information is needed. If the person’s name exists in the first
list, the program will say the person’s birth date and phone number.

3. Create two lists for storing the items sold in a grocery store and their
corresponding prices. Write a program that asks the user to enter an
item’s name and then displays that item’s price, if it is found in the list.

4. What is stored in numList after executing the script shown on the next
page? Re-create the procedure and run it to check your answer.

5. Write a program to double each of the elements stored in a numer-
ical list.

6. Write a program that prompts the user to enter students’ names and
scores and store these inputs in two lists. Stop collecting data when the
user enters –1 for a student’s name.

7. Write a program that prompts the user to enter the highest and lowest
temperatures for the 12 months of a year. Store the input values in two
lists.

8. Write a program that prompts the user to enter 10 integers. Store
each entered number into a list only if it is not a duplicate of a previ-
ously entered number.

9. Write a program that processes a list of 20 scores on a test with 100
items and finds the number of students who scored between 85 and 90.

S h a r i n g a n D
c o L L a B o r a t i o n

Scratch makes it easy for you to collaborate and share
your work with people all over the world, and this
appendix highlights features in Scratch 2 that pro-
mote connecting with others. In particular, you’ll
learn how to create an account, how to use your backpack to work with
sprites and scripts created by others, how to remix other people’s projects,
and how to publish your work and share it with the Scratch community.

creating a Scratch account
Although you don’t need an account to use Scratch, having an account
can be beneficial. It gives you the ability to save your work on the Scratch
website, communicate with other users, and share your work online. Follow
these steps to create a Scratch account:

1. Go to http://scratch.mit.edu/ and click the Join Scratch link at the top
right of the screen. In the dialog that appears (see Figure A-1), enter
a username and password and then click Next.

244 Appendix

Figure A-1: First dialog in the account-creation process

2. In the second dialog (see Figure A-2), enter your date of birth, gender,
country, and email address. Then click Next.

Figure A-2: Second dialog in the account-creation process

Sharing and Collaboration 245

3. You’ll see a dialog welcoming you to the Scratch user community (see
Figure A-3). Click OK Let’s Go!, and you’ll be logged in to your new
account.

Figure A-3: Last dialog in the account-creation process

The navigation bar at the top of the screen will show your username, as
illustrated in Figure A-4. Use the four links (Create, Explore, Discuss, and
Help) in the navigation bar to start Scratch’s Project Editor, explore avail-
able projects, collaborate with other Scratchers, and find useful guidelines
and additional Scratch resources.

uname

Username

Open the Project Editor.

Explore projects of interest to you.

Collaborate with other Scratchers.

Find useful guidelines and resources.

See comments on your projects and alerts from the Scratch team.

See all projects you’ve created in Scratch 2.

Figure A-4: Navigation bar for a logged-in user

The following sections discuss some of the features that become avail-
able when you log in to your Scratch account.

246 Appendix

using the backpack
The backpack (available only to logged-in users) allows you to copy sprites,
scripts, costumes, backdrops, and sounds from any project and use them in
your own projects. Click the Explore link, shown in Figure A-4, to go to the
project exploration page shown in Figure A-5. Here you can try out Scratch
projects created by other people.

Explore projects by
category or search
for certain tags.

Loved
Favorited

Viewed
Remixed

Figure A-5: Project exploration page

You can view projects by category, search for projects that contain cer-
tain tags, and sort them according to different criteria (shared, most loved,
most viewed, or most mixed). When you find a project that you want to
explore, double-click its thumbnail to go to that project’s page, as shown
in Figure A-6.

Favorite
this project.

Love this
project.

Share on
other

websites.

Add
project

to studio.

Report as
inappro-
priate.

Total
views

View the
remix tree.

Tell people how to use your project
(such as which keys to press).

How did you make the project?
Did you use ideas, scipts, or artwork
from other people? Thank them here.

Project tags

Figure A-6: An example project page

Sharing and Collaboration 247

Click the See inside button in the upper-right corner of Figure A-6 to
see the contents of this project, as shown in Figure A-7.

Drag sprites, scripts, cos-
tumes, backdrops, and
sounds into your backpack.

Figure A-7: Viewing the contents of another Scratcher’s project

If you want to use parts of this project (sprites, scripts, costumes, back-
drops, or sound files) in one of your own applications, just drag those parts
onto your backpack. To delete an item from your backpack, right-click it
and select Delete from the pop-up menu.

The contents of your backpack are saved on a Scratch server, so you
won’t lose them when you log off. To use an item from your backpack, just
drag it from the backpack onto your project.

creating Your own Project
There are many ways to start programming in Scratch. You can create a
clean project, remix a project that has been shared on Scratch’s website,
or open an old project and modify it. We’ll look at each of these options.

Starting a New Project
To start a brand-new project, click the Create link in the navigation bar
to open Scratch’s Project Editor, shown in Figure A-8.

248 Appendix

Stage

Sprite List

Scripts Area

Bl
oc

ks
 P

al
et

te

Menu Bar

Backpack

Cursor Tools

Ti
ps

 W
in

do
w

Figure A-8: Scratch’s Project Editor for a user who is logged in

This interface is very similar to what you see when you are not logged
in, but there are some important differences:

•	 The backpack pane is visible.

•	 Two new buttons (Share and See project page) appear in the upper-
right corner.

•	 The suitcase icon and username show up at the right edge of the toolbar.

•	 The File menu has new options.

The toolbar and its new options are shown in more detail in Figure A-9.

Figure A-9: The toolbar for logged-in users

Sharing and Collaboration 249

When you are logged in, Scratch automatically saves your work in the
cloud (that is, on the Scratch server), but it’s still a good idea to click Save
before you exit Scratch. The Save as a copy option saves your current project
with a different name. If your current project is named Test, for example, the
new project will be named Test copy. (You can change that name by typing
a new one in the project’s name edit box.) The Revert option discards any
changes you’ve made since you opened the current project.

If you want to save your projects on your computer rather than in the
cloud, use the Download to your computer option. The Upload from your
computer option, on the other hand, allows you to load a Scratch project
from your computer to the Project Editor. You can use this option to upload
projects created with Scratch 1.4 and convert them to the Scratch 2 format.

Remixing a Project
Click the Remix button when you have some ideas to add to another
Scratcher’s project. This will copy the selected project to your account
and give you a starting point for your work.

You can also click View the remix tree on the project’s page (see Fig-
ure A-6) to see how the project has evolved over time and pick the branch
that you’d like to copy from.

If you share your remixed project, the project’s page will list the origi-
nal creator(s) and provide links to their projects.

The Project Page
Click the See project page button in the upper-right corner of Figure A-8 to
edit your project’s page, which is shown in Figure A-10. You can enter instruc-
tions for people who use your application, give credit to anyone whose ideas
or work you used, and specify some tags that will help others find your app.

Project’s title
Click this button to

go back to the
Project Editor.

Figure A-10: A project’s page

250 Appendix

Sharing Your Project
Once you are done with your application, you can share it with the Scratch
community by clicking the Share button. When you share a project, every-
one can find it online and look inside it.

To see a list of all your projects, click the down arrow below your user-
name in the toolbar and select My Stuff from the drop-down menu. (You
can also click the suitcase icon.) This will take you to the My Stuff page,
shown in Figure A-11.

Project statistics. From top
to bottom: views, love-its,
comments, remixes, favorites,
and studios in.

.

List of studios you can
add this project to.

Click this button to unshare
your project.

Figure A-11: The My Stuff page

The My Stuff page allows you to control and view various aspects
of your projects and studios. You can create, share, edit, unshare, and
delete projects from this page. You can also create studios—collections of
projects—and add projects to them. Studios make it convenient to group
related projects together.

n o t e If you delete one of your unshared projects, the project gets moved to the Trash folder,
which acts as a recycle bin for projects. The interface for the Trash folder allows you to
restore a deleted project to the My Stuff page.

Symbols
+ (addition operator), 21
/ (division operator), 21
= (equal to operator), 124
> (greater than operator), 124
< (less than operator), 124
* (multiplication operator), 21
– (subtraction operator), 21

A
abs function, 139
absolute motion, 26–27
account, creating, 243
accumulator pattern, 225
addition operator (+), 21
algebraic expression, 95
and operator, 135
animation, 48

aquarium, 64
changing hat, 64
fireworks, 60–62
joke, 65
nature, 66
smiley face, 49
sneezing cat, 51–52
stick figure, 48
traffic light, 49
wolf, 63
words, 64
zebra, 63

Animation.sb2, 48
Analog Clock application, 171–173
AnalogClock.sb2, 171
applications. See projects
Aquarium.sb2, 64
Area Calculator application, 132–134
AreaCalculator.sb2, 132
Argue application, 50
Argue.sb2, 50
argument

defined, 80
passing to block, 7

arithmetic operators, 21

arithmetic operations, 119
arrow keys, 32, 37, 40, 159
ArrowKeys1.sb2, 159
AskAndWait.sb2, 118
AskAndWait2.sb2, 118
AskAndWait3.sb2, 118
asking questions, to user, 117–118
audio files, playing, 53
average of a list, 225

B
backdrops

adding, 6
defined, 6
exporting, 58
switching, 11

Backdrops tab, 11
background music, 53–54, 58
Backpack, 4, 246–247
Balloon Blast game, 46
BalloonBlast_NoCode.sb2, 46
Bar Chart application, 221–224
BarChart.sb2, 221
BeatsDemo.sb2, 54
beats per minute (bpm), 55–56
binary numbers, 198
Binary to Decimal Converter

application, 198–101
BinaryToDecimal.sb2, 198
Bird Shooter game, 173–176
BirdShooter.sb2, 173
blocks

arguments required by, 6
categories of, 6
command, 20
Control. See Control blocks
custom. See more blocks
Data. See Data blocks
dragging to Scripts Area, 7–8
Events. See Events blocks
function blocks, 20–21, 93
help, 7
with hat, 20

i n D e x

252 Index

blocks (continued)
Looks. See Looks blocks
monitors. See monitors
Motion. See Motion blocks
Operators. See Operator blocks
overview, 20
Pen. See Pen blocks
reporter, 20
Sensing. See Sensing blocks
shape, meaning, 20, 92–93
Sound. See Sound blocks
stack, 20
trigger, 20, 32
types of, 20

Blocks tab, 6–7
Boole, George, 125
Boolean

algebra, 125
condition, 125
data type, 92
expressions, 125, 157
function blocks, 20, 93
parameters, 81, 93
value, 125

bottom-up process, 84
branches (paths), 131
brightness effect, 51
broadcasting messages, 68–70

to coordinate multiple sprites,
70–71

to implement procedures, 73–75
bpm (beats per minute), 55–56
bubble sort algorithm, 229–231
BubbleSort.sb2, 229
building your own block, 75–81
buttons, in interface

Add boolean input, 78
Add label text, 78
Add number input, 78
Add string input, 78
Block help, 7
Choose backdrop from library, 11
Choose costume from library, 9, 31
Choose sound from library, 10, 19
Choose sprite from library, 5, 16
Delete, 12
Duplicate, 12
Go to Scratch website, 12
green flag icon, 4, 17
Grow, 12
Language, 12
Options, 78

New costume from camera, 9
New sprite from camera, 5
Paint new costume, 9
Paint new sprite, 5, 16
Presentation mode, 4, 12
Record new sound, 10
Remix, 249
See inside, 247
See project page, 249
Share, 250
Shrink, 12
stop icon, 4, 17
Upload costume from file, 9
Upload sound from file, 10
Upload sprite from file, 5, 59

C
CatchApples_NoCode.sb2, 39
Catching Apples game, 39–42
ChangingHat.sb2, 64
Chase application, 158
Chase.sb2, 158
Check a Password application, 164–165
Checkers.sb2, 82
ClickOnFace.sb2, 49
CloneIDs.sb2, 105
ClonesAndGlobalVars.sb2, 106
commands. See also blocks

list, 216
accessing elements, 218
adding and deleting, 216–217
contains block, 218–219
hiding or showing monitor, 215
inserting and replacing, 217

motion, 25
pen, 31–32
variable, 98

changing stored value, 102
hiding or showing monitor,

106–107
Compare Fractions applicaton, 211
CompareFractions.sb2, 211
comparing

decimal numbers, 139
letters, 126
strings, 126, 187

composing music, 55
concatenating strings, 118
conditional, 127

blocks, 128, 130
infinite loops, 158

Index 253

condition-controlled loops, 156
Control blocks

create clone of [myself], 41–43
delete this clone, 41, 46
forever, 8, 17–18, 156, 158
if, 128
if/else, 130
repeat [10], 156
repeat until, 156–157
stop [all], 160
wait [1] sec, 2, 12
wait until, 37, 39
when I start as a clone, 41–43

Control palette, 128, 155–171
controlling sound volume, 55
coordinates, 4. See also x -coordinate

and y -coordinate
copying scripts, 9
cosine function, 24, 114
costumes, 9

center of, 13
changing, 9, 48
importing, 9, 59
transparent color, 14–15
switching, 48–49

Costumes tab, 9
countdown, 170
counted loops, 156
counter-controlled loops, 156
counters, 164
counting by a constant amount, 165
CountingByConstAmount.sb2, 165
creating lists, 214
crosshairs, 13
current, 108
custom blocks, 75–81

editing, 77–78
Make a Block button, 75
New Block dialog, 75
options, 75, 77–78
parameters, 77–78
tips for using, 81

D
DanceOnStage.sb2, 57
Dancing on Stage application, 57–60
Data blocks

add [thing] to [list], 216–217
change [var] by [1], 98, 102
delete [1] of [list], 216–117
hide list [list], 215

hide variable [var], 98, 107
insert [thing] at [1] of [list], 217
item [1] of [list], 218
length of [list], 218
[list] contains [thing], 218
[list] reporter, 215
replace item [1] of [list] with

[thing], 217
set [var] to [0], 98
show list [list], 215
show variable [var], 98, 107
[var] reporter, 98, 99

Data palette, 7, 97–100
data types, 20, 92–94
decimal numbers, 21, 92
decision making, 91
decision structures, 128
definite loops, 155
deleting

costumes, 9
sprites, 5

dice, 97
Dice Simulator application, 97–100
direction convention, 28
distance to block, 157
divide and conquer approach to

programming, 67, 72
divisibility, test for, 21
division operator (/), 21
downloading projects, 12, 16
dragging blocks, 7
drawing, 31–32

blade, 170
branch with leaves, 88
checkerboard, 82
flower, 88
geometric shapes, 35, 86
house, 85, 90
leaf, 87
leaves, 88
pinwheel, 103
polygon, 34
rose, 114
rotated squares, 34, 82
spider web, 103
square, 33, 69, 77, 82
triangle, 73, 103, 144
windmill, 35

drawing layers. See layers
DrawSquare.sb2, 33
drums, playing, 54

254 Index

duplicating
code, 37, 72
costumes, 9
scripts, 33
sprites, 5

E
Easy Draw application, 31–32
EasyDraw.sb2, 31
Edit menu, 12
empty list, 214
equal to operator (=), 124
Equation of a Line application, 147–151
EquationOfALine.sb2, 147
even integer, checking if, 21, 131
events, 20
Events blocks

broadcast [msg], 68
broadcast [msg] and wait, 68
when backdrop switches to

[name], 49–50
when green flag clicked, 17
when I receive [msg], 68
when [space] key pressed, 20, 32
when this sprite clicked, 49, 69

Events palette, 32, 37, 49
examples. See projects
exhaustive search, 168
exporting

backdrops, 58
costumes, 9
sprites, 5

F
factors of numbers, 183
falling object, 177
Fibonacci series, 184
File menu, 12
FindAverage.sb2, 225
Finding Min and Max application,

224–225
Finding the Average application, 225
Finding the Median application,

231–232
FindMax.sb2, 224
fireworks animation, 60–62
Fireworks_NoCode.sb2, 60
fisheye effect, 51, 58
Fix My Spelling application, 190–192
FixMySpelling.sb2, 190, 192

flags, 129–130
flowchart, 128, 131, 157
Flower Anatomy quiz, 239–240
FlowerAnatomy.sb2, 239
FlowerFlake.sb2, 87
Flowers application, 70
Flowers2 application, 73
Flowers.sb2, 70
Flowers2.sb2, 73
For all sprites scope, 97, 101–102, 106
forever block, 8, 17–18, 156, 158
forever/if structure, 158
For this sprite only scope, 100, 105, 194
Fraction Tutor application, 206–210
FractionTutor.sb2, 206
FreeFall.sb2, 177
Free-Fall simulation, 177–179
Frequency of Occurrence application,

227–228
“Frère Jacques,” 55
FrereJacques.sb2, 55
function blocks, 20–21, 93

G
GCD (greatest common divisor),

208–210
generating random numbers, 21–22
Get the Money application, 36–39
GettingUserInput.sb2, 116
ghost effect, 51
global variables, 101, 106
graphic effects, 35, 50–51
GraphicEffects.sb2, 50
greater than operator (>), 124
greatest common divisor (GCD),

208–210
green flag icon, 4, 17
Grow button, 12
Guess My Coordinates game, 140–142
GuessMyCoordinates.sb2, 140
Guess My Number game, 150
GuessMyNumber.sb2, 151

H
Hangman game, 201–205
Hangman.sb2, 201
hat (trigger) blocks, 20, 32
heptagon, drawing, 35
heuristic, 146
hexagon, drawing, 35

Index 255

hiding a sprite, 5–6
histogram, 221
House.sb2, 84

I
if block, 128–130
if/else block, 130–132
image effects, 35, 50–51
importing

costumes, 9, 59
sprites, 5

indefinite loops, 156
infinite loops, 156
input

getting from users, 117–119
validating, 162

integer, 21, 92
ItemCount.sb2, 227
iteration, 156

J
Java, 2
joining text, 118
Joke.sb2, 65

K
key, determining when pressed, 20, 32

L
layers, 52
Layers.sb2, 53
less than operator (<), 124
Lindenmayer, Aristid, 116
linear searches, 226–227
Line Follower application, 146–147
LineFollower.sb2, 146
lists, 213–242

bounds checking, 219
commands, 216

accessing elements, 218
adding and deleting, 216–217
contains block, 218–219
inserting and replacing, 217

creating, 214
dynamic, 220
filling with user input, 220
finding maximum of, 224
finding median of, 231
frequency of occurrence, 227

numerical, 224
searching, 226
sorting, 229

local scope, 100
local variables, 100
logical expressions, 123
logical operators, 134

to check numeric ranges, 137–138
Looks blocks

change [color] effect by [25], 51
change size by [10], 51
clear graphic effects, 51
costume #, 112
go back [1] layers, 51–52
go to front, 53, 59
hide, 41, 51, 61
next costume, 48
say [Hello!], 50
say [Hello!] for [2] secs, 50
set [color] effect to [0], 50
set size to [100]%, 51
show, 41, 51, 62
switch backdrop to [name], 49–50
switch costume to [name], 49
think [Hmm…], 50
think [Hmm...] for 2 secs, 50

Looks palette, 48–53
loop blocks, 156
loop counter, 164
loops, 155

conditional infinite, 158
condition-controlled, 156
counted, 156
counter-controlled, 156
definite, 155
ending (stopping), 162
indefinite, 156
infinite, 156
unconditional infinite, 158

loudness, of audio files, 55–56

M
Make a Block button, 75
Make a List button, 214
Make a Variable button, 97
making decisions, 123–153

comparison operators, 124–128
decision structures, 128–134

Massachusetts Institute of Technology
(MIT) Media Lab, 2

Match That Amount game, 182
MatchThatAmount.sb2, 182

256 Index

mathematical functions, 22
Math Wizard application, 236–239
MathWizard.sb2, 236
maximum of a list, 224
median of a list, 231
Median.sb2, 231
menu-driven programs, 132
menus, pop-up

backdrop, 58
costume, 9
custom block, 77–78
slider, 107
sprite, 6

message broadcasting, 68–70
to coordinate multiple sprites,

70–71
to implement procedures, 73–75

message handler, 69
minimum of a list, 224
MIT (Massachusetts Institute of

Technology) Media Lab, 2
MoleculesInMotion.sb2, 182
Molecules in Motion simulation, 182
Money_NoCode.sb2, 36
monitors

changing appearance, 107
defined, 106
displaying, 21
for lists, 215
and scope, 108
slider mode, 107
for variables, 106

More Blocks palette, 75–77, 82, 86
mosaic effect, 51
motion

absolute, 26–27
commands, 25
relative, 27–30, 195

Motion blocks
change x by [10], 28–29
change y by [10], 28–29
direction, 28
glide [1] secs to x:[0] y:[0], 26
go to [mouse pointer], 30
go to [sprite], 148
go to x:[0] y:[0], 26
if on edge, bounce, 8, 12, 18
move [10] steps, 28
point in direction [90], 28
point towards [mouse-pointer],

7, 30
point towards [sprite], 30, 60

set rotation style [style], 30, 35
set x to [0], 26
set y to [0], 26
turn left [15] degrees, 28
turn right [15] degrees, 28
x position, 27
y position, 27

Motion palette, 6, 25
Mouse Display Area, 4
multiplication operator (*), 21
music

background, 53–54, 58
beats, 54
composing, 55
drums, 54
notes, 55
tempo, 56

My Stuff page, 250

N
name

project, 4
sprite, 11
variable, 97

naming variables, 98
Nature.sb2, 66
Navigation bar, 245
nested elements

if and if/else blocks, 132
join blocks, 119
loops, 167–169
procedures, 82
repeat blocks, 34

NestedLoops1.sb2, 167
NestedLoops2.sb2, 168
Nested Loops application, 167–169
n-Leaved Rose application, 114–115
N-LeavedRose.sb2, 114
nonagon, drawing, 34
Non-IntegerRepeatCount.sb2, 166
not operator, 136
NumberSearch.sb2, 162

O
octagon, drawing, 34
odd integer, checking if, 21, 131
Ohm’s law, 108–110
OhmsLaw.sb2, 108
Operator blocks

+ (addition), 21
/ (division), 21

Index 257

= (equal to), 124
> (greater than), 124
< (less than), 124
* (multiplication), 21
– (subtraction), 21
and, 135
ceiling of [9], 92
floor of [9], 92
join [hello][world], 118–119
length of [world], 186
letter [1] of [world], 186
mod, 21, 131
not, 36
or, 135–136
pick random [1] to [10], 22–23
round, 21, 24, 92
sqrt of [9], 22, 30

operators
arithmetic, 21
comparison, 124
logical, 134
relational, 124

Operators palette, 21–22
Orbit.sb2, 182
Orbit simulation, 182
or operator, 135
out-of-range index, 219
overlapping sprites, 52

P
Paint Editor, 13–15

drawing a rectangle, 16
palettes, 6

Control, 128, 155–171
Data, 7, 97–100
Events, 32, 37, 49
Looks, 48–53
More Blocks, 75–77, 82, 86
Motion, 6, 25
Operators, 21–22
Pen, 31–32
Sensing, 30, 117
Sound, 53–56

Palindrome Checker application,
187–188

Palindrome.sb2, 187, 188
parameter, 79

vs. argument, 80
slot, 78, 99

shape, meaning, 92
PasswordCheck.sb2, 164

paths (branches), 131
Pen blocks

change pen color by [10], 31
change pen shade by [10], 31
change pen size by [1], 31
clear, 14, 31–32
pen down, 31
pen up, 70
set pen color to [0], 31, 70, 73
set pen color to [color], 31–32
set pen shade to [50], 31
set pen size to [1], 31–33
stamp, 14, 35, 71, 75

pen commands, 31–32
Pen palette, 31–32
pentagon, drawing, 34
Pig Latin application, 189–190
PigLatin.sb2, 189, 190
Pinwheel procedure, 103
Pinwheel.sb2, 103
Poet application, 232–233
Poet.sb2, 232, 233
Polygon.sb2, 34
Pong game, 15–19
Pong_NoCode.sb2, 15
Pong.sb2, 15
positional values, 198
problem solving, 84, 87, 89, 123
programming environment, 3
programming language, defined, 1–2
pixelate effect, 51
Presentation mode, 4, 12
prime numbers, 183–184
PressureUnderWater_NoSolution.sb2, 90
Pressure Under Water simulation, 90
procedures, 67–90

breaking programs into, 84
building up with, 87
via custom blocks, 75
defined, 68
ending, 162
via message broadcasting, 73
naming, 74
nested, 82
parameters, 77
that call themselves, 169
working with, 84

projects
creating your own, 247
deleting, 250
editor, 3

258 Index

projects (continued)
by name

Analog Clock, 171–173
Area Calculator, 132–134
Argue, 50
Balloon Blast game, 46
Bar Chart, 221–224
Binary to Decimal Converter,

198–101
Bird Shooter game, 173–176
Bubble Sort, 229–231
Catching Apples game, 39–42
Chase, 158
Check a Password, 164–165
Compare Fractions, 211
Dancing on Stage, 57–60
Dice Simulator, 97–100
Easy Draw, 31–32
Equation of a Line, 147–151
Finding the Average, 225
Finding Min and Max, 224–225
Finding the Median, 231–232
Fireworks, 60–62
Fix My Spelling, 190–192
Flower Anatomy quiz, 239–240
Flowers, 70
Flowers2, 73
Fraction Tutor, 206–210
Free-Fall simulation, 177–179
Frequency of Occurrence,

227–228
Get the Money, 36–39
Guess My Coordinates game,

140–142
Guess My Number game, 150
Hangman game, 201–205
Linear Search, 226–227
Line Follower, 146–147
Match That Amount game, 182
Math Wizard, 236–239
Molecules in Motion

simulation, 182
Nested Loops, 168–169
n-Leaved Rose, 114–115
Ohm’s law, 108–110
Orbit simulation, 182
Palindrome Checker, 187–188
Pig Latin, 189–190
Poet, 232–233
Pong game, 15–19
Pressure Under Water

simulation, 90

Projectile Motion simulator,
179–181

Quadrilateral Classification
game, 234–236

Rock, Paper, Scissors game, 150
Say That Number, 240
Series Circuit simulation,

110–111
Shoot game, 195–197
Sieve of Eratosthenes, 241
Sort ’Em Out, 241
Sphere’s Volume and Surface

Area, 111–113
Sunflower Seed Distribution,

116–117
Survival Jump game, 36
Tennis Ball Chaser, 30
Triangle Classification game,

142–145
Unscramble game, 193–195
US Map quiz, 241
Vowel Count, 186–187
Whac-a-Mole game, 94, 95, 122

page, 249
remixing, 249
sharing, 250
starting new, 247

Projectile Motion simulator, 179–181
Projectile.sb2, 179
Prusinkiewicz, Przemyslaw, 116
Pythagorean theorem, 153
Python, 2

Q
QuadClassify.sb2, 234, 235
quadratic equation, 119
Quadrilateral Classification game,

234–236
quadrilaterals, 234
questions, asking, 117

R
random numbers, generating, 21–22
record, 236
recursion, 169–171
RecursionBlade.sb2, 170
Recursion.sb2, 169
refresh, 77
relational expressions, 134
relational operators, 124
relative motion, 27–30, 195

Index 259

remainder, of division, 21, 131
remix, 249
repeat, power of, 33–35
Repetition structures, 155–184
reporter blocks, 20
Revert changes option, 12
RockPaper.sb2, 151
Rock, Paper, Scissors game, 150
Rotated Squares application, 34
RotateSquares.sb2, 34, 82
RotationCenter.sb2, 14
rotation-style buttons, 11
rounding numbers, 21, 24
Run without screen refresh option,

76–77

S
saving projects to cloud, 16
say command, for sprite, 6–7, 50
Say That Number application, 240
SayThatNumber.sb2, 240
scissors icon, 12
scope

of lists, 214–215
of variables, 100

For all sprites, 97, 101–102, 106
For this sprite only, 100,

105, 194
ScopeDemo.sb2, 100
Scratch, 2

account, creating, 243
blocks, overview, 20
direction convention, 28
programming environment, 3
project editor, 3
website, 3

scripts
breaking into smaller parts, 73
copying by dragging, 9
defined, 2
disassembling, 8
duplicating, 33
running, 8
terminating, 8

Scripts Area, 7–9
Scripts tab, 4, 9, 48
searching

exhaustive, 168
linear, 226–227
sequential, 226

SearchList.sb2, 226

Sensing blocks
answer, 118
ask [?] and wait, 117
[attribute] of [sprite], 100, 111
color [c1] is touching [c2]?, 147
current [minute], 171
distance to [mouse-pointer], 157
key [space] pressed?, 40, 46
mouse down?, 144
mouse x, 17, 30
mouse y, 30
reset timer, 37, 39
timer, 37, 39
touching color [color]?, 16, 19, 46
touching [mouse-pointer]?, 145
touching [sprite]?, 18, 37, 41

Sensing palette, 30, 117
sentinel, 220
sequential execution, 124
sequential search, 226
SeriesCircuit.sb2, 110
Series Circuit simulation, 110–111
SeriesCircuitWithSwitch.sb2, 111
sharing Scratch elements, 243, 250
Shoot game, 195–197
Shoot.sb2, 195
Sieve of Eratosthenes application, 241
Sieve.sb2, 241
sine function, 24
size, of sprite, 50
slider, 107–108, 110, 114
slope, computing, 150
small stage layout, 12–13
smiley face animation, 49
sneezing cat animation, 51–52
SneezingCat.sb2, 51
Sort ’Em Out application, 241
SortEmOut.sb2, 241
sorting, 229–231
sound

files, 10, 53
volume, 55–56

Sound blocks
change tempo by [20], 56
change volume by [–10], 56
play drum [1] for [0.25] beats, 54
play note [60] for [0.5] beats, 55
play sound [name], 53–54
play sound [name] until done,

53–54
rest for [0.25] beats, 54
set instrument to [1], 55

260 Index

Sounds blocks (continued)
set tempo to [60] bmp, 55–56
set volume to [100]%, 55
stop all sounds, 53
tempo, 56
volume, 56

Sound palette, 53–56
Sounds tab, 10
speech bubble, 6, 50
Sphere.sb2, 111
Sphere’s Volume and Surface Area

application, 111–113
SpiderWeb procedure, 103
SpiderWeb.sb2, 102
sprites

Can drag in player option, 11–12
center of, 13, 27
cloning, 40–43
current position, 11, 27
defined, 2
deleting, 15
direction, 11, 28
exporting, 5
hiding, 5, 12
importing, 5
info area, 11
information button, 5
moving with arrow keys, 32, 37,

40, 159
moving with mouse, 17
naming, 11
order of, 52
pen, 31
pop-up menu, 6
properties, 104
rotation style, 11
showing, 5, 12
size, 51
speaking, 50
state, 42
thinking, 50
thumbnail, 5
turning with arrow keys, 32
visibility, 11, 48, 51

Sprite List, 5–6
SquareApp.sb2, 69
square root, 24, 30
stack blocks, 20
Stage, 4

thumbnail, 6, 16
StageColor.sb2, 107

stamp, exploring with, 35. See also
Pen blocks: stamp

stick figure animation, 48
stop command, 160
StopDemo.sb2, 160
stop icon, 4, 17
Stop recording button, 10–11
storage index, lists, 214
strings

comparing characters in, 187–189
concatenation, 118
counting special characters in,

186–187
as data types, 186
defined, 92
inserting characters, 191
manipulation, 189–195
processing, 185–211
randomizing characters, 193
removing characters, 194

structured programming, 67, 71–72
subtraction operator (−), 21
Sunflower procedure, 116
Sunflower.sb2, 116
Sunflower Seed Distribution

application, 116–117
Survival Jump game, 36

T
tail recursion, 169
tempo, music, 56
TempoDemo.sb2, 56
Tennis Ball Chaser application, 30
TennisBallChaser.sb2, 30
think command, 50
timer, 39
Tips window, 26, 50
toolbar, in Scratch interface, 12
top-down process, 84
traffic light animation, 49
TrafficLight.sb2, 49
transparent color, 14–15
Triangle Classification game, 142–145
TriangleClassification.sb2, 142
triangle inequality theorem, 153
trigger blocks, 20, 32
truth table

and operator, 135
not operator, 136
or operator, 136

Turbo mode, 13

Index 261

U
unconditional infinite loops, 158
Unscramble game, 193–195
Unscramble.sb2, 193
Upload from your computer option, 12
user input, 117

validating, 137, 162
US Map quiz, 241
USMapQuiz.sb2, 241

V
validating input, 137, 162
variables, 91–122

changing, 102
in clones, 104
cloud, 102
creating, 97
data type, 101
defined, 94
as flags, 129–130
global, 101, 106
introduction to, 94
local, 100
monitors, 98, 106
naming, 98
scope, 97, 100

visibility, sprite, 51
volume, sound, 55–56
VolumeDemo.sb2, 56
Vowel Count application, 186–187
VowelCounts.sb2, 186

W
Watt, Daniel, 233
webcam, 17
Whac-a-Mole game, 94, 95, 122
Whac-a-Mole.sb2, 122
whirl effect, 51
windmill.sb2, 35
Wolf.sb2, 63
Words.sb2, 64

X
x -coordinate, 4, 26
x position block, 27

Y
y -coordinate, 4, 26
y position block, 27

Z
Zebra.sb2, 62

about the online resources
You’ll find many useful materials in the online resources that accompany
this book. Just head over to http://nostarch.com/learnscratch/ to get started!

As you read, open the Scratch scripts (.sb2 files) mentioned in each
chapter to follow along with the examples. Whenever you solve a practice
problem or Try It Out exercise, you can check your answers with the files
in the Solutions folder. Learn even more about Scratch by reading the
infor mation about the Paint Editor, mathe matical functions, and drawing
geometric shapes in the Extra Resources folder. If you want to try out more
guided examples, you’ll even find extra games and simulations to go along
with several chapters in the Bonus Applications folder.

Learn to Program with Scratch is set in New Baskerville, Futura, Verdana, and
Dogma. The book was printed and bound by Lake Book Manufacturing in
Melrose Park, Illinois. The paper is 60# Husky Opaque Offset Smooth, which
is certified by the Sustainable Forestry Initiative (SFI).

The book uses a layflat binding, in which the pages are bound together
with a cold-set, flexible glue and the first and last pages of the resulting book
block are attached to the cover. The cover is not actually glued to the book’s
spine, and when open, the book lies flat and the spine doesn’t crack.

Updates
Visit http://nostarch.com/learnscratch/ for updates, errata, and other
information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

sUper scratch
programming adventUre!
Learn to program by making cool games
by the lead project

october 2013, 160 pp., $24.95
isbn 978-1-59327-531-0
full color

the Lego® mindstorms ®

ev3 Laboratory
build, program, and experiment with
Five Wicked cool robots!
by daniele benedettelli

october 2013, 432 pp., $34.95
isbn 978-1-59327-533-4

think Like a programmer
an introduction to creative problem solving
by v. anton spraul

august 2012, 256 pp., $34.95
isbn 978-1-59327-424-5

the Lego® mindstorms ®

ev3 discovery book
a beginner’s guide to building and
programming robots
by laurens valk

june 2014, 352 pp., $34.95
isbn 978-1-59327-532-7
full color

python For kids
a playful introduction to programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

Javascript For kids
a playful introduction to programming
by nick morgan

june 2014, 252 pp., $34.95
isbn 978-1-59327-408-5
full color

More no-nonsense books from no starch press

L E A R N T O
P R O G R A M W I T H

S C R A T C H

L E A R N T O
P R O G R A M W I T H

S C R A T C H
A V I S U A L I N T R O D U C T I O N T O P R O G R A M M I N G

W I T H G A M E S , A R T , S C I E N C E , A N D M A T H

M A J E D M A R J I

C O
V E R S

S C
R

A T C
H

 2

SHELVE IN:
COM

PUTERS/PROGRAM
M

ING
LANGUAGES

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Scratch is a fun, free, beginner-friendly programming
environment where you connect blocks of code to build
programs. While most famously used to introduce kids
to programming, Scratch can make computer science

countless lines of code in a cryptic programming lan-

script, and with a single click, you can even test any
coded blocks plainly show each logical step in a given

part of your script to check your logic. You’ll learn
how to:

approachable for people of any age. Rather than type

M
A

R
JI

L
E

A
R

N
 T

O
 P

R
O

G
R

A
M

 W
IT

H
 S

C
R

A
T

C
H

L
E

A
R

N
 T

O
 P

R
O

G
R

A
M

 W
IT

H
 S

C
R

A
T

C
H

guage, why not use colorful command blocks and
cartoon sprites to create powerful scripts?

• Harness the power of repeat loops and recursion

• Use if/else statements and logical operators to make
decisions

program
• Store data in variables and lists to use later in your

• Read, store, and manipulate user input

Hands-on projects will challenge you to create an

• Implement key computer science algorithms like linear
searches and bubble sorts

Ohm’s law simulator, draw intricate patterns, program
sprites to mimic line-following robots, create arcade-style
games, and more! Each chapter is packed with detailed
explanations, annotated illustrations, guided examples,
lots of color, and plenty of exercises to help the lessons

Wayne State University in Michigan. He holds a PhD

A B O U T T H E A U T H O R

Majed Marji is a senior development engineer at
General Motors and an adjunct faculty member at

in electrical engineering from Wayne State University
and an MBA in strategic management from Davenport
University.

stick. Learn to Program with Scratch is the perfect place
to start your computer science journey.

G U I D E T O
(A N D P A I N L E S S)
A N I L L U S T R A T E D

C O M P U T E R
S C I E N C E

G U I D E T O
(A N D P A I N L E S S)
A N I L L U S T R A T E D

C O M P U T E R
S C I E N C E

In Learn to Program with Scratch, author Majed Marji
uses Scratch to explain the concepts essential to solving
real-world programming problems. The labeled, color-

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Whom This Book Is For
	A Note to the Reader
	Features
	Organization of This Text
	Conventions Used
	Online Resources
	Errata and Updates

	Chapter 1: Getting Started
	What Is Scratch?
	Scratch Programming Environment
	Sprite List
	The Stage
	try it out 1-3
	Blocks Tab
	Scripts Area

	try it out 1-5
	Costumes Tab

	try it out 1-7
	Sprite Info
	Backdrops Tab
	Sounds Tab
	Toolbar
	Paint Editor
	Setting the Center of an Image

	try it out 1-10
	Setting Transparent Color

	Your First Scratch Game
	Step 1: Prepare the Backdrop
	Step 2: Add the Paddle and Ball
	Step 3: Start the Game and Get Your Sprites Moving

	try it out 1-11
	Step 4: Spice It Up with Sound

	Scratch Blocks: An Overview
	Arithmetic Operators and Functions
	Arithmetic Operators
	Random Numbers
	Mathematical Functions

	Summary
	Problems

	Chapter 2: Motion and Drawing
	Using Motion Commands
	Absolute Motion
	Relative Motion

	try it out 2-2
	Other Motion Commands

	Pen Commands and Easy Draw
	try it out 2-3
	try it out 2-4
	The Power of Repeat
	try it out 2-5
	Rotated Squares
	Exploring with Stamp

	try it out 2-7
	Scratch Projects
	Get the Money
	Catching Apples

	More on Cloned Sprites
	Summary
	Problems

	Chapter 3: Looks and Sound
	The Looks Palette
	Changing Costumes to Animate

	try it out 3-1
	Image Effects
	Sprites That Speak and Think
	try it out 3-3
	Layers

	The Sound Palette
	Playing Audio Files

	Controlling Sound Volume
	Composing Music
	Playing Drums and Other Sounds
	try it out 3-5
	Setting the Tempo
	Scratch Projects
	Dancing on Stage
	Fireworks

	Summary
	Problems
	Size and Visibility

	Chapter 4: Procedures
	Message Broadcasting and Receiving
	Sending and Receiving Broadcasts
	Message Broadcasting to Coordinate Multiple Sprites

	Creating Large Programs in Small Steps
	Creating Procedures with Message Broadcasting
	Building Your Own Block
	Passing Parameters to Custom Blocks

	try it out 4-1
	Using Nested Procedures

	try it out 4-2
	Working with Procedures
	Breaking Programs Down into Procedures

	try it out 4-3
	Building Up with Procedures

	Summary
	Problems

	Chapter 5: Variables
	Data Types in Scratch
	What’s in the Shape?
	Automatic Data Type Conversion

	Introduction to Variables
	What Is a Variable?
	Creating and Using Variables

	Try It Out 5-1
	The Scope of Variables
	Changing Variables

	Try It Out 5-2
	Variables in Clones

	Displaying Variable Monitors
	Using Variable Monitors in Applications
	Simulating Ohm’s Law

	Try It Out 5-3
	Demonstrating a Series Circuit
	Visualizing a Sphere’s Volume and Surface Area

	Try It Out 5-5
	Drawing an n-Leaved Rose

	Try It Out 5-6
	Modeling Sunflower Seed Distribution

	Getting Input from Users
	Performing Arithmetic Operations
	Reading Characters
	Reading a Number
	Summary
	Problems

	Chapter 6: Making Decisions
	Comparison Operators
	Evaluating Boolean Expressions
	Comparing Letters and Strings

	Decision Structures
	The if Block
	Using Variables as Flags
	The if/else Block
	Nested if and if/else Blocks
	Menu-Driven Programs

	Logical Operators
	The and Operator
	The or Operator
	The not Operator
	Using Logical Operators to Check Numeric Ranges

	Scratch Projects
	Guess My Coordinates

	try it out 6-1
	Triangle Classification Game

	try it out 6-2
	Line Follower
	Equation of a Line

	Other Applications
	Summary
	Problems

	Chapter 7: Repetition: A Deeper Exploration of Loops
	More Loop Blocks in Scratch
	The repeat until Block

	try it out 7-1
	Building a forever if Block

	try it out 7-2
	Stop Commands
	try it out 7-3
	Ending a Computational Loop
	Validating User Input

	Counters
	Check a Password
	Counting by a Constant Amount

	Revisiting Nested Loops
	Recursion: Procedures That Call Themselves
	Scratch Projects
	Analog Clock

	Bird Shooter Game
	try it out 7-8
	Free-Fall Simulation

	try it out 7-9
	Projectile Motion Simulator

	try it out 7-10
	Other Applications

	Summary
	Problems

	Chapter 8: String Processing
	Revisiting the String Data Type
	Counting Special Characters in a String
	Comparing String Characters

	try it out 8-1
	String Manipulation Examples
	Igpay Atinlay

	try it out 8-2
	Fix My Spelling

	try it out 8-3
	Unscramble

	Scratch Projects
	Shoot

	try it out 8-4
	Binary to Decimal Converter

	try it out 8-5
	Hangman

	try it out 8-7
	Fraction Tutor

	try it out 8-8
	Summary
	Problems

	Chapter 9: Lists
	Lists in Scratch
	Creating Lists

	try it out 9-1
	List Commands

	try it out 9-2
	Bounds Checking

	Dynamic Lists
	Filling Lists with User Input
	Creating a Bar Chart

	try it out 9-3
	Numerical Lists
	Finding Min and Max
	Finding the Average

	try it out 9-5
	Searching and Sorting Lists
	Linear Search
	Frequency of Occurrence

	try it out 9-6
	Bubble Sort
	Finding the Median

	Scratch Projects
	The Poet

	try it out 9-8
	Quadrilateral Classification Game

	try it out 9-9
	Math Wizard
	Flower Anatomy Quiz

	Other Applications
	Summary
	Problems

	Appendix: Sharing and
Collaboration
	Creating a Scratch Account
	Using the Backpack
	Creating Your Own Project
	Starting a New Project
	Remixing a Project
	The Project Page
	Sharing Your Project

	Index
	About the Online Resources
	Updates

