4th Grade Math: Improper Fractions

Lesson Objective:

By the end of this lesson, students will be able to:

- Understand what improper fractions are.
- Convert improper fractions to mixed numbers and vice versa.
- Compare and order improper fractions.

1. Introduction to Improper Fractions

What is an Improper Fraction?

- An **improper fraction** is a fraction where the numerator (top number) is greater than or equal to the denominator (bottom number).
- Unlike proper fractions where the numerator is smaller than the denominator, improper fractions represent a value that is equal to or greater than 1.

Examples:

- $\frac{5}{3}$, $\frac{9}{8}$, and $\frac{7}{7}$ are improper fractions.
- $\frac{3}{4}$ is a proper fraction, as the numerator is less than the denominator.

Key Concept: Improper fractions often represent a whole number and a fractional part, which can be expressed as a **mixed number**.

2. Visualizing Improper Fractions

Visual Representation:

 Use diagrams (like pizza slices or fraction bars) to help students understand how improper fractions work.

Example: For $\frac{5}{4}$:

• Imagine 5 parts of a pizza, with each pizza cut into 4 slices. You have more than one whole pizza.

3. Converting Improper Fractions to Mixed Numbers

Steps to Convert:

- 1. Divide the numerator by the denominator.
- 2. The quotient (result of division) becomes the whole number.
- 3. The remainder becomes the numerator of the fraction.
- 4. The denominator stays the same.

Example 1: Convert $\frac{9}{4}$ to a mixed number.

- 1. Divide 9 by 4: $9 \div 4 = 2$ with a remainder of 1.
- 2. The quotient is 2, so the whole number is 2.
- 3. The remainder is 1, so the fraction is $\frac{1}{4}$.
- 4. The mixed number is $2\frac{1}{4}$.

Example 2: Convert $\frac{7}{3}$ to a mixed number.

- 1. Divide 7 by 3: $7\div 3=2$ with a remainder of 1.
- 2. The quotient is 2, so the whole number is 2.
- 3. The remainder is 1, so the fraction is $\frac{1}{3}$.
- 4. The mixed number is $2\frac{1}{3}$.

4. Converting Mixed Numbers to Improper Fractions

Steps to Convert:

- 1. Multiply the whole number by the denominator.
- 2. Add the result to the numerator.
- 3. Keep the denominator the same.

Example 1: Convert $3\frac{2}{5}$ to an improper fraction.

- 1. Multiply the whole number by the denominator: $3 \times 5 = 15$.
- 2. Add the numerator to the product: 15+2=17.
- 3. The improper fraction is $\frac{17}{5}$.

Example 2: Convert $2\frac{3}{8}$ to an improper fraction.

- 1. Multiply the whole number by the denominator: $2 \times 8 = 16$.
- 2. Add the numerator to the product: 16 + 3 = 19.
- 3. The improper fraction is $\frac{19}{8}$.

5. Comparing Improper Fractions

Steps for Comparing:

- 1. If the denominators are the same, compare the numerators directly.
 - The larger the numerator, the greater the fraction.
- If the denominators are different, find a common denominator and then compare the numerators.

Example 1: Compare $\frac{7}{4}$ and $\frac{9}{4}$.

- The denominators are the same.
- Compare the numerators: 9 is greater than 7, so $\frac{9}{4}$ is greater than $\frac{7}{4}$.

Example 2: Compare $\frac{5}{6}$ and $\frac{7}{8}$.

- The denominators are different.
- Find a common denominator (24):

•
$$\frac{5}{6} = \frac{20}{24}$$

•
$$\frac{7}{8} = \frac{21}{24}$$

• Since 21 is greater than 20, $\frac{7}{8}$ is greater than $\frac{5}{6}$.

6. Practice Problems

- 1. Convert Improper Fractions to Mixed Numbers:
 - Convert $\frac{8}{3}$ to a mixed number.
 - Convert ¹¹/₅ to a mixed number.
- 2. Convert Mixed Numbers to Improper Fractions:
 - Convert $2\frac{2}{7}$ to an improper fraction.
 - Convert $4\frac{1}{6}$ to an improper fraction.
- 3. Compare the Improper Fractions:
 - Compare $\frac{13}{5}$ and $\frac{12}{5}$.
 - Compare $\frac{7}{9}$ and $\frac{4}{7}$.

7. Real-World Application

Problem 1: A recipe calls for $3\frac{1}{4}$ cups of flour. You only have a measuring cup that measures $\frac{1}{4}$ cup. How many times would you need to fill the $\frac{1}{4}$ cup to get the right amount of flour?

Solution: Convert $3\frac{1}{4}$ to an improper fraction:

+ 3 imes 4+1=13, so $3rac{1}{4}=rac{13}{4}.$ You will need to fill the $rac{1}{4}$ cup 13 times.

Problem 2: John ate $2\frac{1}{3}$ pizzas, and Sarah ate $1\frac{3}{4}$ pizzas. How much pizza did they eat together?

Solution: Convert the mixed numbers to improper fractions:

- $2\frac{1}{3} = \frac{7}{3}$
- $1rac{3}{4}=rac{7}{4}$ Find a common denominator and add the fractions:
- Common denominator is 12.
- $\frac{7}{3} = \frac{28}{12}, \frac{7}{4} = \frac{21}{12}$
- $\frac{28}{12} + \frac{21}{12} = \frac{49}{12} = 4\frac{1}{12}$. Together, they ate $4\frac{1}{12}$ pizzas.

8. Review and Wrap-Up

• Recap Key Concepts:

- Improper fractions have numerators greater than or equal to denominators.
- You can convert between improper fractions and mixed numbers.
- Understanding how to compare improper fractions helps in real-world situations.

• Class Discussion:

- Why do we convert improper fractions to mixed numbers in certain situations (e.g., cooking, dividing objects)?
- Can improper fractions be easier to use in some cases?