READING MATH

Proofs

When you solve an equation by factoring, you are using a deductive argument. Each step can be justified by an algebraic property.

Solve
$$4x^2 - 324 = 0$$
.

$$4x^2 - 324 = 0$$
 Original equation
$$(2x)^2 - 18^2 = 0$$
 $4x^2 = (2x)^2$ and $324 = 18^2$
$$(2x + 18)(2x - 18) = 0$$
 Factor the difference of squares.
$$2x + 18 = 0 \quad \text{or} \quad 2x - 18 = 0$$
 Zero Product Property
$$x = -9$$
 Solve each equation.

Notice that the column on the left is a step-by-step process that leads to a solution. The column on the right contains the reasons for each statement. A two-column proof is a deductive argument that contains statements and reasons.

Two-Column Proof

Given: a, x, and y are real numbers such that $a \neq 0$, $x \neq 0$, and $y \neq 0$.

Prove: $ax^4 - ay^4 = a(x^2 + y^2)(x + y)(x - y)$

There is a reason for each statement.

The first statement contains the given information.

The last statement

is what you want

to prove.

Statements

- ▶ 1. a, x, and y are real numbers such that $a \neq 0$, $x \neq 0$, and $y \neq 0$.
 - **2.** $ax^4 ay^4 = a(x^4 y^4)$
 - **3.** $ax^4 ay^4 = a[(x^2)^2 (y^2)^2]$
 - **4.** $ax^4 ay^4 = a(x^2 + y^2)(x^2 y^2)$
- **5.** $ax^4 ay^4 = a(x^2 + y^2)(x + y)(x y)$

Reasons

- 1. Given
- **2.** The GCF of ax^4 and ay^4 is a.
- **3.** $x^4 = (x^2)^2$ and $y^4 = (y^2)^2$
- **4.** Factor the difference of squares.
- **5.** Factor the difference of squares.

Reading to Learn

- 1. Solve $\frac{1}{16}t^2 100 = 0$ by using a two-column proof.
- 2. Write a two-column proof using the following information. (Hint: Group terms with common factors.)

Given: c and d are real numbers such that $c \neq 0$ and $d \neq 0$.

Prove:
$$c^3 - cd^2 - c^2d + d^3 = (c + d)(c - d)(c - d)$$

3. Explain how the process used to write two-column proofs can be useful in solving Find the Error exercises, such as Exercise 37 on page 451.