Graphing Calculator Lab Curve Fitting

Concepts in Motion

Interactive Lab algebra 1.com

If there is a constant increase or decrease in data values, there is a linear trend. If the values are increasing or decreasing more and more rapidly, there may be a quadratic or exponential trend.

Linear Trend

Quadratic Trend

Exponential Trend

With a TI-83/84 Plus, you can find the appropriate regression equation.

ACTIVITY

FARMING A study is conducted in which groups of 25 corn plants are given a different amount of fertilizer and the gain in height after a certain time is recorded. The table below shows the results.

Fertilizer (mg)	0	20	40	60	80
Gain in Height (in.)	6.48	7.35	8.73	9.00	8.13

Step 1 Make a scatter plot.

• Enter the fertilizer in L1 and the height in L2.

KEYSTROKES: Review entering a list on page 234.

• Use STAT PLOT to graph the scatter plot.

KEYSTROKES: Review statistical plots on page 234. Use **ZOOM** 9 to graph.

[-8, 88] scl: 5 by [6.0516, 9.4284] scl: 1

The graph appears to be a quadratic regression.

Step 2 Find the regression equation.

- Select DiagnosticOn from the CATALOG.
- Select QuadReg on the **STAT** CALC menu.

KEYSTROKES: STAT ▶ 5 ENTER

The equation is about $y = -0.0008x^2 + 0.1x + 6.3$.

 R^2 is the **coefficient of determination**. The closer R^2 is to 1, the better the model. To choose a quadratic or exponential model, fit both and use the one with the R^2 value closer to 1.

Step 3 Graph the regression equation.

• Copy the equation to the Y= list and graph.

KEYSTROKES: Y= VARS 5 ▶ 1 ZOOM 9

[-8, 88] scl: 5 by [6.0516, 9.4284] scl: 1

Step 4 Predict using the equation.

• Find the amount of fertilizer that produces the maximum gain in height.

KEYSTROKES: 2nd [CALC] 4

[-8, 88] scl: 5 by [6.0516, 9.4284] scl: 1

According to the graph, on average about 55 milligrams of the fertilizer produces the maximum gain.

EXERCISES

Plot each set of data points. Determine whether to use a linear, quadratic, or exponential regression equation. State the coefficient of determination.

1.

X	y	
0.0	2.98	
0.2	1.46	
0.4	0.90	
0.6	0.51	
0.8	0.25	
1.0	0.13	

2.

X	у
1	25.9
2	22.2
3	20.0
4	19.3
5	18.2
6	15.9

3.

Х	у
10	35
20	50
30	70
40	88
50	101
60	120

х	y	
1	3.67	
3	5.33	
5	6.33	
7	5.67	
9	4.33	
11	2.67	

TECHNOLOGY DVD players were introduced in 1997. For Exercises 5–8, use the table at the right.

- **5.** Make a scatter plot of the data.
- **6.** Find an appropriate regression equation, and state the coefficient of determination.
- **7.** Use the regression equation to predict the number of DVD players that will sell in 2008.
- **8.** Do you believe your equation would be accurate for a year beyond the range of the data, such as 2020? Explain.

Year	DVD Players Sold (millions)	
1997	0.32	
1998	1.09	
1999	4.02	
2000	8.50	
2001	12.71	
2002	17.09	
2003	21.99	

Source: Consumer Electronics Association