Graphing Calculator Lab Fractional Exponents

You have studied the properties of exponents that are whole numbers. You can use a calculator to explore the meaning of fractional exponents.

ACTIVITY

Step 1 Evaluate $9^{\frac{1}{2}}$ and $\sqrt{9}$.

KEYSTROKES:
$$9 \bigcirc (1 \div 2)$$
 ENTER 3

KEYSTROKES: 2nd
$$[\sqrt{}]$$
 9 ENTER 3

Record the results in a table like the one at the right.

- Step 2 Use calculator to evaluate each expression. Record each result in your table. To find a root other than a square root, choose the ∜ function from the MATH menu.
- **1A.** Study the table. What do you observe about the value of an expression of the form $a^{\frac{1}{n}}$?
- **1B.** What do you observe about the value of an expression of the form $a^{\frac{m}{n}}$?

Expression	Value	Expression	Value
91/2	3	$\sqrt{9}$	3
16 ¹ / ₂		√16	
8 ¹ / ₃		√√8	
27 ^{1/3}		√√27	
8 ^{2/3}		$\sqrt[3]{8^2}$	
16 ⁴		$\sqrt[4]{8^3}$	

ANALYZE THE RESULTS

1. Recall the Power of a Power Property. For any number a and all integers m and n, $(a^m)^n = a^{m \cdot n}$. Assume that fractional exponents behave as whole number exponents and find the value of $\left(b^{\frac{1}{2}}\right)^2$.

$$\left(b^{\frac{1}{2}}\right)^2 = b^{\frac{1}{2} \cdot 2}$$
 Power of a Power Property
= b^1 or b Simplify.

Thus, $b^{\frac{1}{2}}$ is a number whose square equals b. So it makes sense to define $b^{\frac{1}{2}} = \sqrt{b}$. Use a similar process to define $b^{\frac{1}{n}}$.

2. Define $b^{\frac{m}{n}}$. Justify your answer.

Write each expression as a power of x.

$$3. \ \frac{\sqrt{x}}{(\sqrt[4]{x})(x)}$$

4.
$$\frac{(x)(\sqrt[3]{x})}{(\sqrt{x})(\sqrt[5]{x})}$$

Write each root as an expression using a fractional exponent. Then evaluate the expression.

5.
$$\sqrt{49}$$

6.
$$\sqrt[4]{81}$$

7.
$$\sqrt{4^3}$$

8.
$$\sqrt[3]{125^2}$$

