Using a Calculator

- Read the problem very carefully. Decide if you need the calculator to help you solve the problem.
- Clear the calculator by pressing the clear key when starting a new problem.
- If you see an E in the display, clear the error before you begin.
- If you see an M in the display, clear the memory and the calculator before you begin.
- If the number in the display is not one of the answer choices, check your work. You may have to round the number in the display.
- Your calculator will NOT automatically perform the correct order of operations.
- When working with calculators, use careful and deliberate keystrokes, and always remember to check your answer to make sure that it is reasonable. Calculators might display an incorrect answer if you press the keys too quickly.
- Check your answer to make sure that you have completed all of the necessary steps.

732 **STUDENT RESOURCES** Comstock Images

Science Reference Guide

Equations

Acceleration (\overline{a})	=	change in velocity (m/s) time taken for this change (s)	ā	=	$\frac{v_f-v_i}{t_f-t_i}$
Average speed (\overline{v})	=	distance time	$\overline{\mathbf{v}}$	=	$\frac{d}{t}$
Density (D)	=	mass (g) Volume (cm ³)	D	=	$\frac{m}{V}$
Percent Efficiency (e)	=	$\frac{\text{Work out (J)}}{\text{Work in (J)}} \times 100$	eff	=	$\frac{\rm W_{out}}{\rm W_{in}}\times 100$
Force in newtons (F)	=	mass (kg) \times acceleration (m/s ²)	F	=	ma
Frequency in hertz (f)	=	number of events (waves) time (s)	f	=	$\frac{n \text{ of events}}{t}$
Momentum (p)	=	mass (kg) \times velocity (m/s)	р	=	mv
Wavelength (λ)	=	velocity (m/s) frequency (Hz)	λ	=	$\frac{v}{f}$
Work (W)	=	Force (N) \times distance (m)	W	=	Fd

Units of Measure

cm = centimeter	kg = kilogram
g = gram	m = meter
Hz = hertz	N = newton
J = joule (newton-meter)	s = second

Understanding Scientific Terms

This list of prefixes, suffixes, and roots is provided to help you understand science terms used throughout this textbook. The list identifies whether the prefix, suffix, or root is of Greek (G) or Latin (L) origin. Also listed is the meaning of the prefix, suffix, or root and a science word in which it is used.

ORIGIN	MEANING	EXAMPLE	ORIGIN	MEANING	EXAMPLE
A ad (L)	to toward	adavial	dorm (L)	apart	dormancy
du (L)	iu, iuwaiu	audxidi	uuiiii (L)	sieeh	uormancy
der O(G)	dll without	aeropic	e		
	without	anaphace	china (C)	chiny	achinadarm
dild (U) and (C)	up	androosium		spilly	echinouenn
andro (G)	male	androecium	ec (G)	ouler	ecosystem
angio (G)	vessei	angiosperm	endo (G)	WITNIN	endosperm
antn/o (G)	TIOWER	antnopnyte	epi (G)	upon	epidermis
anti (G)	against	antibody	eu (G)	true	eukaryote
aqu/a (L)	of water	aquatic	exo (G)	outside	exoskeleton
archae (G)	ancient	archaebacteria	-		
arthro, artio (G)	jointed	arthropod	F		
askos (G)	bag	ascospore	fer (L)	to carry	conifer
aster (G)	star	Asteroidea			
autos (G)	self	autoimmune	G		
			gastro (G)	stomach	gastropod
В			gen/(e)(o) (G)	kind	genotype
bi (L)	two	bipedal	genesis (G)	to originate	oogenesis
bio (G)	life	biosphere	gon (G)	reproductive	archegonium
			gravi (L)	heavy	gravitropism
С			gymn/o (G)	naked	gymnosperm
carn (L)	flesh	carnivore	gyn/e (G)	female	gynoecium
cephalo (G)	head	cephalopod			
chlor (G)	light green	chlorophyll	н		
chroma (G)	pigmented	chromosome	hal(o) (G)	salt	halophyte
cide (L)	to kill	insecticide	hapl(o) (G)	single	haploid
circ (L)	circular	circadian	hemi (G)	half	hemisphere
cocc/coccus (G)	small and round	streptococcus	hem(o) (G)	blood	hemoglobin
con (L)	together	convergent	herb/a(i) (L)	vegetation	herbivore
cyte (G)	cell	cytoplasm	heter/o (G)	different	heterotrophic
			hom(e)/o (G)	same	homeostasis
D			hom (L)	human	hominid
de (L)	remove	decompose	hydr/o (G)	water	hydrolysis
dendron (G)	tree	dendrite			
dent (L)	tooth	edentate	I		
derm (G)	skin	epidermis	inter (L)	between	internode
di (G)	two	disaccharide	intra (L)	within	intracellular
. ,			is/o (G)	equal	isotonic

ORIGIN	MEANING	EXAMPLE	ORIGIN	MEANING	EXAMPLE
К			plasm/o (G)	to form	plasmodium
kary (G)	nucleus	eukaryote	pod (G)	foot	gastropod
kera (G)	hornlike	keratin	poly (G)	many	polymer
			post (L)	after	posterior
L			pro (G) (L)	before	prokaryote
leuc/o (G)	white	leukocyte	prot/o (G)	first	protocells
logy (G)	study of	biology	pseud/o (G)	false	pseudopodium
lymph/o (L)	water	lymphocyte			
lysis (G)	break up	dialysis	R		
			re (L)	back to original	reproduce
Μ			rhiz/o (G)	root	rhizoid
macr/o (G)	large	macromolecule			
meg/a (G)	great	megaspore	S		
meso (L)	in the middle	mesophyll	scope (G)	to look	microscope
meta (G)	after	metaphase	some (G)	body	lysosome
micr/o (G)	small	microscope	sperm (G)	seed	gymnosperm
mon/o (G)	only one	monocotyledon	stasis (G)	remain constant	homeostasis
morph/o (G)	form	morphology	stom (G)	mouthlike opening	stomata
Ν			syn (G)	together	synapse
nema (G)	a thread	nematode	т		
neuro (G)	nerve	neuron	tel/o (G)	end	telonhase
nod (L)	knot	nodule	terr (I)	of Farth	terrestrial
nomv(e) (G)	system of laws	taxonomy	therm (G)	heat	endotherm
nonij(c) (d)	system of larts	canoniny	thylak (G)	sack	thylakoid
0			trans (L)	across	transpiration
olia/o (G)	small, few	oligochaete	trich (G)	hair	trichome
omni (L)	all	omnivore	trop/o (G)	a change	gravitropism
orni(s) (G)	bird	ornithology	trophic (G)	nourishment	heterotrophic
oste/o (G)	bone formation	osteocyte			I
ov (L)	an egg	oviduct	U		
	55		uni (L)	one	unicellular
\mathbf{P}	ancient	naloontology	V		
par(a)e/o(G)	bosido	pareoficology		60W	vaccino
path (a)	suffering	paratinyroiu	Vacc/a (L)	cow eat greadily	omnivoro
path(0)	foot	continodo	VOIE (L)	eat greenily	ommore
peu (L)	through	normophlo	v		
per (L)	around about	perificable		dry	veronhute
phag/o (G)	eating	nhanocyte		ury	Actophyte
$\frac{1}{100}$ nhot/o (G)	light	nhotosynthesis	7		
nhvl (G)	race class	nhylogeny	70/0 (G)	living being	volooz
phyll (G)	leaf	chloronhvll		two joined	homozvaous
nhvte (G)	nlant	eninhyte	2)9003(0)	wojonicu	nomozygous
Origin	Meaning	Fxample			
pinna (L)	feather	pinnate			

Reference Handbook

Diversity of Life: Classification of Living Organisms

Archaebacteria and Kingdom Eubacteria—contain organisms is used today. Two kingdoms—Kingdom Archaebacteria and Kingdom Eubacteria—contain organisms that do not have a nucleus and that lack membrane-bound structures in the cytoplasm of their cells. The members of the other four kingdoms have a cell or cells that contain a nucleus and structures in the cytoplasm, some of which are surrounded by membranes. These kingdoms are Kingdom Protista, Kingdom Fungi, Kingdom Plantae, and Kingdom Animalia.

Kingdom Archaebacteria

one-celled; some absorb food from their surroundings; some are photosynthetic; some are chemosynthetic; many are found in extremely harsh environments including salt ponds, hot springs, swamps, and deep-sea hydrothermal vents

Kingdom Eubacteria

one-celled; most absorb food from their surroundings; some are photosynthetic; some are chemosynthetic; many are parasites; many are round, spiral, or rod-shaped; some form colonies

Kingdom Protista

Phylum Euglenophyta one-celled; photosynthetic or take in food; most have one flagellum; euglenoids

Kingdom Eubacteria Bacillus anthracis

Phy Desn

Phylum Chlorophyta Desmids

CONTENT

Phylum Bacillariophyta one-celled; photosynthetic; have unique double shells made of silica; diatoms

Phylum Dinoflagellata one-celled; photosynthetic; contain red pigments; have two flagella; dinoflagellates

Phylum Chlorophyta one-celled, manycelled, or colonies; photosynthetic; contain chlorophyll; live on land, in freshwater, or salt water; green algae

Phylum Rhodophyta most are many-celled; photosynthetic; contain red pigments; most live in deep, saltwater environments; red algae

Phylum Phaeophyta most are many-celled; photosynthetic; contain brown pigments; most live in saltwater environments; brown algae

Phylum Rhizopoda one-celled; take in food; are free-living or parasitic; move by means of pseudopods; amoebas

Amoeba

736 STUDENT RESOURCES (t)NIBSC/Science Photo Library/Photo Researchers, (b)Dr. Richard Kessel, (br)David John **Phylum Zoomastigina** one-celled; take in food; free-living or parasitic; have one or more flagella; zoomastigotes

Phylum Ciliophora one-celled; take in food; have large numbers of cilia; ciliates

Phylum Sporozoa one-celled; take in food; have no means of movement; are parasites in animals; sporozoans

Phylum Myxomycota Slime mold

Phylum Oomycota *Phytophthora infestans*

Phyla Myxomycota and Acrasiomycota

one- or many-celled; absorb food; change form during life cycle; cellular and plasmodial slime molds

Phylum Oomycota many-celled; are either parasites or decomposers; live in freshwater or salt water; water molds, rusts and downy mildews

Kingdom Fungi

Phylum Zygomycota many-celled; absorb food; spores are produced in sporangia; zygote fungi; bread mold

Phylum Ascomycota one- and many-celled; absorb food; spores produced in asci; sac fungi; yeast

Phylum Basidiomycota many-celled; absorb food; spores produced in basidia; club fungi; mushrooms

Phylum Deuteromycota members with unknown reproductive structures; imperfect fungi; *Penicillium*

Phylum Mycophycota organisms formed by symbiotic relationship between an ascomycote or a basidiomycote and green alga or cyanobacterium; lichens

Lichens

Kingdom Plantae

Divisions Bryophyta (mosses), Anthocerophyta (hornworts), Hepaticophyta (liverworts), Psilophyta (whisk ferns) many-celled nonvascular plants; reproduce by spores produced in capsules; green; grow in moist, land environments

Division Lycophyta many-celled vascular plants; spores are produced in conelike structures; live on land; are photosynthetic; club mosses

Division Arthrophyta vascular plants; ribbed and jointed stems; scalelike leaves; spores produced in conelike structures: horsetails

Division Pterophyta vascular plants; leaves called fronds; spores produced in clusters of sporangia called sori; live on land or in water; ferns

Division Ginkgophyta deciduous trees; only one living species; have fan-shaped leaves with branching veins and fleshy cones with seeds; ginkgoes

Division Cycadophyta palmlike plants; have large, featherlike leaves; produces seeds in cones; cycads

Division Coniferophyta deciduous or evergreen; trees or shrubs; have needlelike or scalelike leaves; seeds produced in cones; conifers

Division Anthophyta Tomato plant

Phylum

Flatworm

CONTENTS

Division Gnetophyta shrubs or woody vines; seeds are produced in cones; division contains only three genera; gnetum

Division Anthophyta dominant group of plants; flowering plants; have fruits with seeds

Kingdom Animalia

Phylum Porifera aquatic organisms that lack true tissues and organs; are asymmetrical and sessile; sponges

Phylum Cnidaria radially symmetrical organisms; have a digestive cavity with one opening; most have tentacles armed with stinging cells; live in aquatic environments singly or in colonies; includes jellyfish, corals, hydra, and sea anemones

Phylum Platyhelminthes bilaterally symmetrical worms; have flattened bodies; digestive system has one opening; parasitic and free-living species; flatworms

Division Bryophyta Liverwort

Reference Handbook

Phylum Chordata

Phylum Nematoda round, bilaterally symmetrical body; have digestive system with two openings; free-living forms and parasitic forms; roundworms

Phylum Mollusca soft-bodied animals, many with a hard shell and soft foot or footlike appendage; a mantle covers the soft body; aquatic and terrestrial species; includes clams, snails, squid, and octopuses

Phylum Annelida bilaterally symmetrical worms; have round, segmented bodies; terrestrial and aquatic species; includes earthworms, leeches, and marine polychaetes

Phylum Arthropoda largest animal group; have hard exoskeletons, segmented bodies, and pairs of jointed appendages; land and aquatic species; includes insects, crustaceans, and spiders

Phylum Echinodermata marine organisms; have spiny or leathery skin and a water-vascular system with tube feet; are radially symmetrical; includes sea stars, sand dollars, and sea urchins

Phylum Chordata organisms with internal skeletons and specialized body systems; most have paired appendages; all at some time have a notochord, nerve cord, gill slits, and a post-anal tail; include fish, amphibians, reptiles, birds, and mammals

Use and Care of a Microscope

Eyepiece Contains magnifying _ lenses you look through.

Arm Supports the body tube.

Low-power objective Contains the lens with the lowest power — magnification.

Stage clips Hold the microscope_slide in place.

Coarse adjustment Focuses the, image under low power.

Fine adjustment Sharpens the image under high magnification.

CONTENTS

Body tube Connects the eyepiece to the revolving nosepiece.

- **Revolving nosepiece** Holds and turns the objectives into viewing position.
- **High-power objective** Contains the lens with the highest magnification.
- **Stage** Supports the microscope slide.
- **Light source** Provides light that passes upward through the diaphragm, the specimen, and the lenses.
- **Base** Provides support for the microscope.

Caring for a Microscope

- 1. Always carry the microscope holding the arm with one hand and supporting the base with the other hand.
- 2. Don't touch the lenses with your fingers.
- The coarse adjustment knob is used only when looking through the lowest-power objective lens. The fine adjustment knob is used when the high-power objective is in place.
- **4.** Cover the microscope when you store it.

Using a Microscope

- Place the microscope on a flat surface that is clear of objects. The arm should be toward you.
- 2. Look through the eyepiece. Adjust the diaphragm so light comes through the open-ing in the stage.
- Place a slide on the stage so the specimen is in the field of view. Hold it firmly in place by using the stage clips.

4. Always focus with the coarse adjustment and the low-power objective lens first. After the object is in focus on low power, turn the nosepiece until the high-power objective is in place. Use ONLY the fine adjustment to focus with the high-power objective lens.

Making a Wet-Mount Slide

- Carefully place the item you want to look at in the center of a clean, glass slide. Make sure the sample is thin enough for light to pass through.
- 2. Use a dropper to place one or two drops of water on the sample.
- **3.** Hold a clean coverslip by the edges and place it at one edge of the water. Slowly lower the coverslip onto the water until it lies flat.
- If you have too much water or a lot of air bubbles, touch the edge of a paper towel to the edge of the coverslip to draw off extra water and draw out unwanted air.

Reference Handbook

740 STUDENT RESOURCES

Weather Map Symbols

Sample Plotted Rep	Sample Plotted Report at Each Station								
Precipitation	Wind Spe and Direct	eed Sky Coverage ction		Some Types of High Clouds					
🔲 Fog	O 0 calm	m 🔿 No cover		Scattered cirrus					
★ Snow	∕ 1−2 kı	nots	① 1/10 or less	Dense cirrus in patches					
Rain	✓ 3–7 kı	nots	• 2/10 to 3/10	Veil of cirrus covering entire sky					
Thunderstorm	8–121	knots	4/10	Cirrus not covering entire sky					
• Drizzle	₩ 13-17	7 knots	0 -						
\bigtriangledown Showers	₩ 18-22	2 knots	6/10						
	23-27	7 knots	4 7/10						
	✔ 48-52	2 knots	• Overcast with openings						
	1 knot = 1.852	2 km/h	Completely overcast						
Some Types of Mid	dle Clouds	Some	Types of Low Cloud	s Fronts and Pressure Systems					
Thin alto	ostratus	\Box	Cumulus of fair weather	(H) or High Center of high- or (L) or Low low-pressure system					
Thick alt layer	ostratus	$\mathbf{\nabla}$	Stratocumulus	Cold front					
Thin alto in patch	ostratus es	Fractocumulus o bad weather		Warm front					
Thin alto in bands	ostratus		Stratus of fair weather	• Occluded front					
				Stationary front					

Physical Science Reference Tables

Standard Units

Symbol	Name	Quantity
m	meter	length
kg	kilogram	mass
Ра	pascal	pressure
К	kelvin	temperature
mol	mole	amount of a substance
J	joule	energy, work, quantity of heat
S	second	time
C	coulomb	electric charge
V	volt	electric potential
А	ampere	electric current
V	ohm	resistance

Physical Constants and Conversion Factors

Acceleration due to gravity	g	9.8 m/s/s or m/s ²
Avogadro's Number	Ň	6.02 3 10 ²³ particles per mole
Electron charge	e	1.6 3 10 ²¹⁹ C
Electron rest mass	m	9.11 3 10 ²³¹ kg
Gravitation constant	G	6.67 3 10 ²¹¹ N 3 m ² /kg ²
Mass-energy relationship		1 u (amu) 5 9.3 3 10 ² MeV
Speed of light in a vacuum	С	3.00 3 108 m/s
Speed of sound at STP	331 m/s	
Standard Pressure	1 atmospl	here
	101.3 kPa	
	760 Torr o	or mmHg

Heat Constants

14.7 lb/in.²

	Specific Heat (average) (kJ/kg 3 °C) (J/g 3 °C)	Melting Point (°C)	Boiling Point (°C)	Heat of Fusion (kJ/kg) (J/g)	Heat of Vaporization (kJ/kg) (J/g)
Alcohol (ethyl)	2.43 (liq.)	2117	79	109	855
Aluminum	0.90 (sol.)	660	2467	396	10500
Ammonia	4.71 (liq.)	278	233	332	1370
Copper	0.39 (sol.)	1083	2567	205	4790
Iron	0.45 (sol.)	1535	2750	267	6290
Lead	0.13 (sol.)	328	1740	25	866
Mercury	0.14 (liq.)	239	357	11	295
Platinum	0.13 (sol.)	1772	3827	101	229
Silver	0.24 (sol.)	962	2212	105	2370
Tungsten	0.13 (sol.)	3410	5660	192	4350
Water (solid)	2.05 (sol.)	0	_	334	_
Water (liquid)	4.18 (liq.)	_	100	_	_
Water (vapor)	2.01 (gas)	_	_	_	2260
Zinc	0.39 (sol.)	420	907	113	1770

CONTENTS

742

	18								
The color of	an alam ant/s	black	13	14	15	16	17	2 He 4.003	
tells you if the color of tells you if the color of tells you if the metal, nonn	an element's he element is netal, or meta	block a illoid.	Boron 5 B 10.811	Carbon 6 C 12.011	Nitrogen 7 V N 14.007	Oxygen 8 0 15.999	Fluorine 9 7 F 18.998	Neon 10 V Ne 20.180	
10	11	12	Aluminum 13 Al 26.982	Silicon 14 Si 28.086	Phosphorus 15 P 30.974	Sulfur 16 S 32.065	Chlorine 17 Cl 35.453	Argon 18 Ar 39.948	
Nickel 28 Ni 58.693	Copper 29 Cu 63.546	Zinc 30 Zn 65.409	Gallium 31 Ga 69.723	Germanium 32 Ge 72.64	Arsenic 33 As 74.922	Selenium 34 Se 78.96	Bromine 35 Br 79.904	Krypton 36 Kr 83.798	
Palladium 46 Pd 106.42	Silver 47 Ag 107.868	Cadmium 48 Cd 112.411	Indium 49 In 114.818	Tin 50 Sn 118.710	Antimony 51 Sb 121.760	Tellurium 52 Te 127.60	lodine 53 I 126.904	Xenon 54 Xe 131.293	
Platinum 78 Pt 195.078	Gold 79 Au 196.967	Mercury 80 Hg 200.59	Thallium 81 TI 204.383	Lead 82 Pb 207.2	Bismuth 83 Bi 208.980	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 P Rn (222)	
Darmstadtium 110 Ds (281)	Roentgenium 111 Rg (272)	Ununbium * 112 Uub (285)		Ununquadium * 114 Uuq (289)					

* The names and symbols for elements 112–114 are temporary. Final names will be selected when the elements' discoveries are verified.

									/
Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
63	64	65	66	67	68	69	70	71	
Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.04	174.967	
Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	
95	96	97 ()	98 ()	99 o	100 •	101	102 <u>o</u>	103 ()	
Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

