# 7.5 Proportionality Relationships

FlexBooks<sup>®</sup> 2.0 > American HS Geometry > Proportionality Relationships

Last Modified: Dec 25, 2014

# **Learning Objectives**

- Identify proportional segments when two sides of a triangle are cut by a segment parallel to the third side.
- Extend triangle proportionality to parallel lines.

# **Review Queue**

Write a similarity statement for the two triangles in the diagram. Why are they similar?



[Figure 1]

- 1. If XA = 16, XY = 18, XB = 32, find XZ.
- 2. If YZ=27 , find AB .
- 3. Find AY and BZ.
- 4. Is  $\frac{AY}{AX} = \frac{BZ}{BX}$ ?

**Know What?** To the right is a street map of part of Washington DC. R Street, Q Street, and O Street are parallel and  $7^{th}$  Street is perpendicular to all three. R and Q are one "city block" (usually  $\frac{1}{4}$  mile or 1320 feet) apart. The other given measurements are on the map. What are x and y?



[Figure 2]

What is the distance from:

- R and  $7^{th}$  to R and Florida?
- Q and  $7^{th}$  to Q and Florida?
- O and  $7^{th}$  to O and Florida?

# **Triangle Proportionality**

Think about a midsegment of a triangle. A midsegment is parallel to one side of a triangle and divides the other two sides into congruent halves. The midsegment divides those two sides **proportionally.** 

**Example 1:** A triangle with its midsegment is drawn below. What is the ratio that the midsegment divides the sides into?



#### [Figure 3]

**Solution:** The midsegment's endpoints are the midpoints of the two sides it connects. The midpoints split the sides evenly. Therefore, the ratio would be a : a or b : b. Both of these reduce to 1:1.

The midsegment divides the two sides of the triangle proportionally, but what about other segments?

#### Investigation 7-4: Triangle Proportionality

Tools Needed: pencil, paper, ruler

1. Draw riangle ABC . Label the vertices.

Draw XY so that X is on AB and Y is on  $BC \cdot X$  and Y can be **anywhere** on these sides.



[Figure 4]

2. Is  $\triangle XBY \sim \triangle ABC$ ? Why or why not? Measure AX, XB, BY, and YC. Then set up the ratios  $\frac{AX}{XB}$  and  $\frac{YC}{YB}$ . Are they equal?

- 3. Draw a second triangle, riangle DEF . Label the vertices.
- 4. Draw XY so that X is on DE and Y is on EF AND  $XY \mid\mid DF$  .

Is 
$$\triangle XEY \sim \triangle DEF$$
 ? Why or why not? Measure  $DX, XE, EY$ , and  $YF$ . Then set up the ratios  $\frac{DX}{XE}$  and  $\frac{FY}{YE}$ . Are they equal?



From this investigation, it is clear that if the line segments are parallel, then XY divides the sides proportionally.

**Triangle Proportionality Theorem:** If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.

**Triangle Proportionality Theorem Converse:** If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

#### Proof of the Triangle Proportionality Theorem



[Figure 6]

<u>Given</u>:  $\triangle ABC$  with  $DE \parallel AC$ 

 $\underline{\text{Prove:}} \ \frac{AD}{DB} = \frac{CE}{EB}$ 

| Statement                                                          | Reason                                                    |
|--------------------------------------------------------------------|-----------------------------------------------------------|
| 1. $DE \parallel AC$                                               | Given                                                     |
| 2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$              | Corresponding Angles Postulate                            |
| 3. $	riangle ABC \sim 	riangle DBE$                                | AA Similarity Postulate                                   |
| 4. $AD + DB = AB$<br>EC + EB = BC                                  | Segment Addition Postulate                                |
| 5. $\frac{AB}{BD} = \frac{BC}{BE}$                                 | Corresponding sides in similar triangles are proportional |
| $6. \ \frac{AD + DB}{BD} = \frac{EC + EB}{BE}$                     | Substitution PoE                                          |
| 7. $\frac{AD}{BD} + \frac{DB}{DB} = \frac{EC}{BE} + \frac{BE}{BE}$ | Separate the fractions                                    |
| 8. $\frac{AD}{BD} + 1 = \frac{EC}{BE} + 1$                         | Substitution PoE (something over itself always equals 1)  |
| 9. $\frac{AD}{BD} = \frac{EC}{BE}$                                 | Subtraction PoE                                           |

We will not prove the converse, it is essentially this proof but in the reverse order. Using the corollaries from earlier in this chapter,  $\frac{BD}{DA} = \frac{BE}{EC}$  is also a true proportion.

**Example 2:** In the diagram below,  $EB \mid\mid BD$ . Find BC.



[Figure 7]

Solution: Use the Triangle Proportionality Theorem.

$$\frac{10}{15} = \frac{BC}{12} \longrightarrow 15(BC) = 120$$
$$BC = 8$$

**Example 3:** Is DE || CB?



[Figure 8]

**Solution:** Use the Triangle Proportionality Converse. If the ratios are equal, then the lines are parallel.

 $\frac{6}{18} = \frac{1}{3}$  and  $\frac{8}{24} = \frac{1}{3}$ 

Because the ratios are equal,  $DE \mid\mid CB$ .

# **Parallel Lines and Transversals**

We can extend the Triangle Proportionality Theorem to multiple parallel lines.

**Theorem 7-7:** If three parallel lines are cut by two transversals, then they divide the transversals proportionally.

Example 4: Find a.



#### [Figure 9]

**Solution:** The three lines are marked parallel, so you can set up a proportion.

$$\frac{a}{20} = \frac{9}{15}$$
$$180 = 15a$$
$$a = 12$$

Theorem 7-7 can be expanded to **any** number of parallel lines with **any** number of transversals. When this happens all corresponding segments of the transversals are proportional.

**Example 5:** Find a, b, and c.



#### [Figure 10]

**Solution:** Look at the corresponding segments. Only the segment marked "2" is opposite a number, all the other segments are opposite variables. That means we will be using this ratio, 2:3 in all of our proportions.

| a 9                         | 2  3                          | 2  3                        |
|-----------------------------|-------------------------------|-----------------------------|
| $\frac{1}{2} = \frac{1}{3}$ | $\overline{4} = \overline{b}$ | $\frac{1}{3} = \frac{1}{c}$ |
| 3a = 18                     | 2b=12                         | 2c = 9                      |
| a = 6                       | b=6                           | c = 4.5                     |

There are several ratios you can use to solve this example. To solve for b, you could have used the proportion  $\frac{6}{4} = \frac{9}{b}$ , which will still give you the same answer.

# **Proportions with Angle Bisectors**

#### [Figure 11]

The last proportional relationship we will explore is how an angle bisector intersects the opposite side of a triangle. By definition,  $\overrightarrow{AC}$  divides  $\angle BAD$  equally, so  $\angle BAC \cong \angle CAD$ . The proportional relationship is  $\frac{BC}{CD} = \frac{AB}{AD}$ . The proof is in the review exercises.

**Theorem 7-8:** If a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the lengths of the other two sides.

**Example 6:** Find x.

#### [Figure 12]

**Solution:** Because the ray is the angle bisector it splits the opposite side in the same ratio as the sides. So, the proportion is:

$$\frac{9}{x} = \frac{21}{14}$$
$$21x = 126$$
$$x = 6$$

**Example 7:** *Algebra Connection* Determine the value of x that would make the proportion true.

#### [Figure 13]

**Solution:** You can set up this proportion just like the previous example.

$$egin{array}{l} rac{5}{3} = rac{4x+1}{15} \ 75 = 3(4x+1) \ 75 = 12x+3 \ 72 = 12x \ 6 = x \end{array}$$

**Know What? Revisited** To find x and y, you need to set up a proportion using parallel the parallel lines.

$$\frac{2640}{x} = \frac{1320}{2380} = \frac{1980}{y}$$

From this,  $x = 4760 \ ft$  and  $y = 3570 \ ft$ .

To find a, b, and c, use the Pythagorean Theorem.

$$2640^2 + a^2 = 4760^2 \ 3960^2 + b^2 = 7140^2 \ 5940^2 + c^2 = 10710^2$$

$$a = 3960.81, b = 5941.21, c = 8911.82$$



[Figure 14]

### **Review Questions**

Use the diagram to answers questions 1-5.  $DB \mid\mid FE$  .



[Figure 15]

1. Name the similar triangles. Write the similarity statement.



Use the diagram to answer questions 6-10.  $AB \mid\mid DE$  .



[Figure 16]

- 6. Find BD .
- 7. Find DC .
- 8. Find DE .
- 9. Find AC .

10. We know that 
$$\frac{BD}{DC} = \frac{AE}{EC}$$
 and  $\frac{BA}{DE} = \frac{BC}{DC}$ . Why is  $\frac{BA}{DE} \neq \frac{BD}{DC}$ ?

Use the given lengths to determine if  $AB \mid\mid DE$ .



*Algebra Connection* Find the value of the missing variable(s).



Find the value of each variable in the pictures below.



Find the unknown lengths.

#### 7.5. Proportionality Relationships



Casey attempts to solve for a in the diagram using the proportion

$$\frac{5}{a} = \frac{6}{5}$$

What did Casey do wrong? Write the correct proportion and solve for a.

25. Michael has a triangular shaped garden with sides of length 3, 5 and 6 meters. He wishes to make a path along the perpendicular bisector of the angle between the sides of length 3 m and 5 m. Where will the path intersect the third side?



[Figure 34]

This is a map of lake front properties. Find a and b, the length of the edge of Lot 1 and Lot 2 that is adjacent to the lake.

Fill in the blanks of the proof of Theorem 7-8.



[Figure 35] <u>Given</u>:  $\triangle BAD$  with  $\overrightarrow{AC}$  is the angle bisector of  $\angle BAD$  Auxiliary lines  $\overrightarrow{AX}$  and  $\overleftrightarrow{XD}$ , such that X, A, B are collinear and  $\overrightarrow{AC} \mid \mid \overleftrightarrow{XD} \cdot \underline{Prove}$ :  $\frac{BC}{CD} = \frac{BA}{AD}$ 

| Statement                                                                                                                                             | Reason                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1. $\overrightarrow{AC}$ is the angle bisector of $igtriangle BAD  X, A, B$ are collinear and $\overrightarrow{AC} \parallel \overleftrightarrow{XD}$ |                                     |
| 2. $\angle BAC \cong \angle CAD$                                                                                                                      |                                     |
| 3.                                                                                                                                                    | Corresponding Angles Postulate      |
| 4. $\angle CAD \cong \angle ADX$                                                                                                                      |                                     |
| 5. $\angle X \cong \angle ADX$                                                                                                                        |                                     |
| 6. $	riangle XAD$ is isosceles                                                                                                                        |                                     |
| 7.                                                                                                                                                    | Definition of an Isosceles Triangle |
| 8.                                                                                                                                                    | Congruent segments are also equal   |
| 9.                                                                                                                                                    | Theorem 7-7                         |
| 10.                                                                                                                                                   |                                     |

# **Review Queue Answers**

1. 
$$\triangle AXB \sim \triangle YXZ$$
 by AA Similarity Postulate  
2.  $\frac{16}{18} = \frac{32}{XZ}, XZ = 36$   
3.  $\frac{16}{18} = \frac{AB}{27}, AB = 24$   
4.  $AY = 18 - 16 = 2, BZ = 36 - 32 = 4$   
5.  $\frac{2}{16} = \frac{4}{32}$ . Yes, this is a true proportion.