12.2 Translations and Vectors

FlexBooks® 2.0 > American HS Geometry > Translations and Vectors

Last Modified: Dec 25, 2014

Learning Objectives

- ullet Graph a point, line, or figure and translate it x and y units.
- Write a translation rule.
- Use vector notation.

Review Queue

- 1. Find the equation of the line that contains (9, -1) and (5, 7).
- 2. What type of quadrilateral is formed by A(1,-1), B(3,0), C(5,-5) and D(-3,0)?
- 3. Find the equation of the line parallel to #1 that passes through (4, -3).
- 4. Find the equation of the line perpendicular to #1 that passes through (4, -3).

Know What? Lucy currently lives in San Francisco, S, and her parents live in Paso Robles, P. She will be moving to Ukiah, U, in a few weeks. All measurements are in miles. Find:

- a) The component form of $\overrightarrow{PS}, \overrightarrow{SU}$ and \overrightarrow{PU} .
- b) Lucy's parents are considering moving to Fresno, F . Find the component form of \overrightarrow{PF} and \overrightarrow{UF} .
- c) Is Ukiah or Paso Robles closer to Fresno?



[Figure 1]

Transformations

Recall from Lesson 7.6, we learned about dilations, which is a type of transformation. Now, we are going to continue learning about other types of transformations. All of the transformations in this chapter are rigid transformations.

Transformation: An operation that moves, flips, or changes a figure to create a new figure.

Rigid Transformation: A transformation that preserves size and shape.

The rigid transformations are: translations, reflections, and rotations. The new figure created by a transformation is called the *image*. The original figure is called the *preimage*. Another word for a rigid transformation is an *isometry*. Rigid transformations are also called congruence transformations.

Also in Lesson 7.6, we learned how to label an image. If the preimage is A, then the image would be labeled A^\prime , said "a prime." If there is an image of A^\prime , that would be labeled $A^{\prime\prime}$, said "a double prime."

Translations

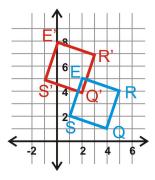
The first of the rigid transformations is a translation.

Translation: A transformation that moves every point in a figure the same distance in the same direction.

In the coordinate plane, we say that a translation moves a figure x units and y units.

Example 1: Graph square S(1,2),Q(4,1),R(5,4) and E(2,5). Find the image after the translation $(x,y) \to (x-2,y+3)$. Then, graph and label the image.

Solution: The translation notation tells us that we are going to move the square to the left 2 and up 3.

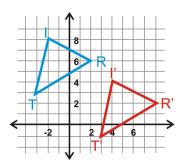


[Figure 2]

$$(x,y)
ightarrow (x-2,y+3) \ S(1,2)
ightarrow S'(-1,5) \ Q(4,1)
ightarrow Q'(2,4) \ R(5,4)
ightarrow R'(3,7) \ E(2,5)
ightarrow E'(0,8)$$

Example 2: Find the translation rule for $\triangle TRI$ to $\triangle T'R'I'$.

Solution: Look at the movement from T to T'. T is (-3, 3) and T' is (3, -1). The change in x is 6 units to the right and the change in y is 4 units down. Therefore, the translation rule is $(x,y) \to (x+6,y-4)$.



[Figure 3]

From both of these examples, we see that a translation preserves congruence. Therefore, σ translation is an isometry. We can show that each pair of figures is congruent by using the distance formula.

Example 3: Show $\triangle TRI \cong \triangle T'R'I'$ from Example 2.

Solution: Use the distance formula to find all the lengths of the sides of the two triangles.

$$\frac{\triangle TRI}{TR} = \sqrt{(-3-2)^2 + (3-6)^2} = \sqrt{34}$$

$$RI = \sqrt{(2-(-2))^2 + (6-8)^2} = \sqrt{20}$$

$$TI = \sqrt{(-3-(-2))^2 + (3-8)^2} = \sqrt{26}$$

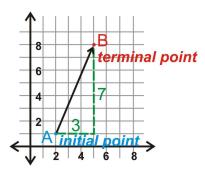
$$TI = \sqrt{(3-4)^2 + (-1-4)^2} = \sqrt{26}$$

Vectors

Another way to write a translation rule is to use vectors.

Vector: A quantity that has direction and size.

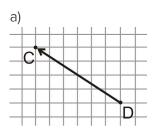
In the graph below, the line from A to B, or the distance traveled, is the vector. This vector would be labeled \overrightarrow{AB} because A is the *initial point* and B is the *terminal point*. The terminal point always has the arrow pointing towards it and has the half-arrow over it in the label.



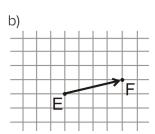
[Figure 4]

The **component form** of \overrightarrow{AB} combines the horizontal distance traveled and the vertical distance traveled. We write the component form of \overrightarrow{AB} as $\langle 3,7 \rangle$ because \overrightarrow{AB} travels 3 units to the right and 7 units up. Notice the brackets are pointed, $\langle 3,7 \rangle$, not curved.

Example 4: Name the vector and write its component form.



[Figure 5]



[Figure 6]

Solution:

- a) The vector is \overrightarrow{DC} . From the initial point D to terminal point C, you would move 6 units to the left and 4 units up. The component form of \overrightarrow{DC} is $\langle -6,4 \rangle$.
- b) The vector is \overrightarrow{EF} . The component form of \overrightarrow{EF} is $\langle 4,1
 angle$.

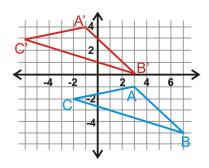
Example 5: Draw the vector \overrightarrow{ST} with component form $\langle 2, -5
angle$.

[Figure 7]

Solution: The graph above is the vector \overrightarrow{ST} . From the initial point S it moves down 5 units and to the right 2 units.

The positive and negative components of a vector always correlate with the positive and negative parts of the coordinate plane. We can also use vectors to translate an image.

Example 6: Triangle $\triangle ABC$ has coordinates A(3,-1),B(7,-5) and C(-2,-2). Translate $\triangle ABC$ using the vector $\langle -4,5\rangle$. Determine the coordinates of $\triangle A'B'C'$.



[Figure 8]

Solution: It would be helpful to graph $\triangle ABC$. To translate $\triangle ABC$, add each component of the vector to each point to find $\triangle A'B'C'$.

$$A(3,-1) + \langle -4,5 \rangle = A'(-1,4)$$

 $B(7,-5) + \langle -4,5 \rangle = B'(3,0)$
 $C(-2,-2) + \langle -4,5 \rangle = C'(-6,3)$

Example 7: Write the translation rule for the vector translation from Example 6.

Solution: To write $\langle -4,5
angle$ as a translation rule, it would be (x,y) o (x-4,y+5) .

Know What? Revisited

a)
$$\overrightarrow{PS}=\left\langle -84,187\right\rangle ,\overrightarrow{SU}=\left\langle -39,108\right\rangle ,\overrightarrow{PU}=\left\langle -123,295\right\rangle$$

b)
$$\overrightarrow{PF} = \left<62,91\right>, \overrightarrow{UF} = \left<185,-204\right>$$

c) You can plug the vector components into the Pythagorean Theorem to find the distances. Paso Robles is closer to Fresno than Ukiah.

$$UF = \sqrt{185^2 + (-204)^2} \cong 275.4 \ miles, PF = \sqrt{62^2 + 91^2} \cong 110.1 \ miles$$

Review Questions

1. What is the difference between a vector and a ray?

Use the translation (x,y) o (x+5,y-9) for questions 2-8.

- 2. What is the image of A(-6,3) ?
- 3. What is the image of B(4,8)?
- 4. What is the preimage of C'(5,-3) ?
- 5. What is the image of A'?
- 6. What is the preimage of D'(12,7)?
- 7. What is the image of A''?
- 8. Plot $A,A^{\prime},A^{\prime\prime}$, and $A^{\prime\prime\prime}$ from the questions above. What do you notice? Write a conjecture.

The vertices of $\triangle ABC$ are A(-6,-7),B(-3,-10) and C(-5,2). Find the vertices of $\triangle A'B'C'$, given the translation rules below.

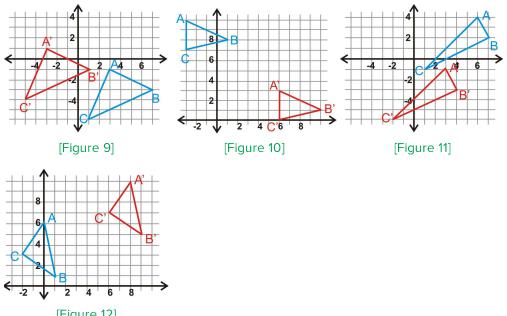
9.
$$(x,y) \to (x-2,y-7)$$

10.
$$(x,y) \to (x+11,y+4)$$

11.
$$(x,y)
ightarrow (x,y-3)$$

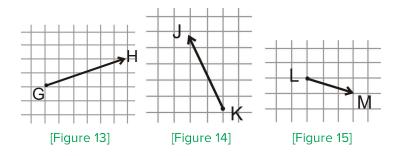
12.
$$(x,y) \to (x-5,y+8)$$

In questions 13-16, $\triangle A'B'C'$ is the image of $\triangle ABC$. Write the translation rule.



- [Figure 12]
- 13. Verify that a translation is an isometry using the triangle from #15.
- 14. If $\triangle A'B'C'$ was the *preimage* and $\triangle ABC$ was the image, write the translation rule for #16.

For questions 19-21, name each vector and find its component form.



For questions 22-24, plot and correctly label each vector.

- 22. $\overrightarrow{AB} = \langle 4, -3 \rangle$
- 23. $\overrightarrow{CD} = \langle -6, 8 \rangle$
- 24. $\overrightarrow{FE}=\langle -2,0
 angle$
- 25. The coordinates of $\triangle DEF$ are D(4,-2), E(7,-4) and F(5,3) . Translate $\triangle DEF$ using the vector $\langle 5,11 \rangle$ and find the coordinates of $\triangle D'E'F'$.
- 26. The coordinates of quadrilateral $\,QUAD\,$ are $\,Q(-6,1),U(-3,7),A(4,-2)\,$ and D(1,-8) . Translate QUAD using the vector $\langle -3,-7
 angle$ and find the coordinates of Q'U'A'D'.

For problems 27-29, write the translation rule as a translation vector.

27.
$$(x,y) \to (x-3,y+8)$$

28.
$$(x,y) \to (x+9,y-12)$$

29.
$$(x,y) \to (x,y-7)$$

For problems 30-32, write the translation vector as a translation rule.

30.
$$\langle -7,2 \rangle$$

31.
$$\langle 11, 25 \rangle$$

32.
$$\langle 15, -9 \rangle$$

Review Queue Answers

1.
$$y = -2x + 17$$

3.
$$y = -2x + 5$$

4.
$$y = \frac{1}{2}x - 5$$